Modeling and forecasting blackberry production in Colombia using a Box Jenkins ARIMA approach

Authors

DOI:

https://doi.org/10.17981/econcuc.44.1.2023.Econ.4

Keywords:

Predictive capacity, univariate analysis, data modeling, production

Abstract

Blackberry production in Colombia contributes to the nation´s gross domestic profit, employment and farmers’ social well-being. It is considered of great economic importance as blackberry fruits are used as raw material for the agroindustry. In this manner, production instability affects farmers’ economic profitability; therefore, forecasting plays an important role in monitoring production as well as in farmers´ planting decision and resource allocation. Hence, the purpose of the study was to model and forecast blackberry production in Colombia using a Box Jenkins ARIMA approach for the period 1992-2023. A quantitative, non-experimental, correlational and descriptive research design was selected. The appropriateness of the model and its predictive capacity was assessed by verifying the different goodness-of-fit criteria. Results showed that the ARIMA (1,1,0) was the most suitable model as it captured the behavior of the actual time series. Based on the forecasted values it is expected a 5.47% increase in blackberry production for the period 2021-2023 which will consequently improve farmers´ income and thus contribute to the reduction in poverty.

Downloads

Download data is not yet available.

Author Biographies

Susan Elsa Cancino, Universidad de Pamplona

Is an economist from the Universidade Federal de Pernambuco, Brazil. MBA from the University of Nottingham, United Kingdom. Independent Researcher, member of the Plant Biotechnology Group, University of Pamplona, Pamplona.

Giovanni Orlando Cancino Escalante, Universidad de Pamplona

Is a biologist from the Pontificia Universidad Javeriana. PhD from the University of Nottingham, United Kingdom. Full Time Professor, University of Pamplona, Pamplona, Colombia.

Daniel Francisco Cancino Ricketts, Pontifica Universidad Javeriana

Is a final-year biology student from the Pontificia Universidad Javeriana, Bogotá, Colombia.

References

Afzal, M., Rehman, H. U. & Butt, A. R. (2002). Forecasting: a dilemma of modules (A Comparison of Theory Based and Theory Free Approaches). Pakistan Economic and Social Review, 40(1), 1–18. Available: https://www.jstor.org/stable/25825233

Agronet. (s.f.). Blackberry statistical data [Database]. Available: http://www.agronet.gov.co/estadistica/Paginas/home.aspx

Akın, M., Eyduran, S., Çelik, Ş., Aliyev, P., Ayko, S. & Eyduran, E. (2021). Modeling and forecasting cherry production in Turkey. The Journal of Animal and Plant Science, 31(3), 773–781. https://doi.org/10.36899/JAPS.2021.3.0267

Arguello, R. & Valderrama-González, D. (2015). Sectoral and poverty impacts of agricultural policy adjustments in Colombia. Agricultural Economics, 46(2), 259–280. https://doi.org/10.1111/agec.12155

Burhan, A. & Khalid, M. (2006). Forecasting Kinnow production in Pakistan: An econometric analysis. International Journal of Agriculture & Biology, 8(4), 455–458. Available from https://www.fspublishers.org/published_papers/6916_..pdf

Brandt, J. & Bessler, D. (1984). Forecasting with Vector Autoregressions versus a Univariate ARIMA Process: An empirical example with U.S. Hog Prices. North Central Journal of Agricultural Economics, 6(2), 29–36. https://doi.org/10.2307/1349248

Brooks, C. (2019). Introductory econometrics for finance. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108524872

Cancino, S., Cancino-Escalante, G. y Cancino-Ricketts, D. (2020). Modelo econométrico para el cultivo de mora de castilla (Rubus glaucus) en los municipios de Pamplona y Chitagá, Norte de Santander, Colombia. Aibi Revista de Investigación, Administración e Ingeniería, 8(1), 37–43. https://doi.org/10.15649/2346030X.752

Cancino, S., Cancino, G. y Cancino, D. (2021). Análisis de regresión de los factores que afectan la rentabilidad económica de la producción de curuba. Dictamen Libre, (29), 1–13. https://doi.org/10.18041/2619-4244/dl.29.7861

Cárdenas M, Echavarría J, Hernández G, Maiguashca A, Meisel A, Ocampo, J. y Zárate, J. (2018). Coyuntura del sector agropecuario colombiano. [Informe de la Junta Directiva al Congreso de la República]. Bogotá, D.C.: Banco de la República. Disponible en https://www.banrep.gov.co/es/recuadro-2-coyuntura-del-sectoragropecuario-colombiano

Chen, C.-K. (2008). An integrated enrollment forecast model. AIR IR Applications, 15, 1–18. Available: https://eric.ed.gov/?id=ED504328

Dickey, D. & Fuller, W. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348

E-views (version 9.0). Econometric Views. [Software]. London: IHS. Available: www.eviews.com

Franco G. y Giraldo, M. (1998). El cultivo de la mora. Mosquera: Corporación Colombiana de Investigación Agropecuaria-CORPOICA. Disponible en http://bibliotecadigital.agronet.gov.co/handle/11348/4039

FAO. (s.f.). FAOSTAT. Crops and livestock products. [Database]. Available: https://www.fao.org/faostat/en/#data/QCL

Gajbihe, S., Wankhade, R. & Mahalle, S. (2010). Forecasting chickpea production in India using ARIMA model. International Journal of Commerce and Business Management, 3(2), 212–215. Available from http://researchjournal.co.in/upload/assignments/3_212-215.pdf

Gujarati, D. y Porter, D. (2010). Econometría. México D.F.: McGraw Hill.

Hamjah, M. A. (2014). Forecasting Major Fruit Crops Productions in Bangladesh using Box-Jenkins ARIMA Model. Journal of Economics and Sustainable Development, 5(7), 96–107. Available from https://core.ac.uk/download/pdf/234646336.Pdf

Henley D. (2012). The agrarian roots of industrial growth: rural development in South-East Asia and sub-Saharan Africa. Development Policy Review, 30(51), 25–47. https://doi.org/10.1111/j.1467-7679.2012.00564.x

Iqbal, M. A. (2020). Application of regression techniques with their advantages and disadvantages. Elektor Magazine, 4(1), 11–17. Available: https://www.elektormagazine.com/magazine-archive/2020

Judge, G., Hill, R., Griffiths W., Lutkepohl, H. & Lee, T. (1991). An introduction to the theory and practice of econometrics. [2 ed.]. New York: Wiley.

Khan, S. & Khan, U. (2020). Comparison of Forecasting Performance with VAR vs. ARIMA Models Using Economic Variables of Bangladesh. Asian Journal of Probability and Statistics, 10(2), 33–47. https://doi.org/10.9734/ajpas/2020/v10i230243

Khan, D., Ullah, A., Bibi, Z., Ullah, I., Zulfiqar, M. & Khan, Z. (2020). Forecasting area and production of guava in Pakistan: An econometric analysis. Sarhad Journal of Agriculture, 36(1), 272–281. http://dx.doi.org/10.17582/journal.sja/2020/36.1.272.281

Majid, R. & Mir, S. (2018). Advances in Statistical Forecasting Methods: An Overview. Economic Affairs, 63(4), 815–831. https://doi.org/10.30954/0424-2513.4.2018.5

Mehmood, S. & Ahmad, Z. (2013). Time series model to forecast area of mangoes from Pakistan: An application of univariate ARIMA model. Academy of Contemporary Research, 2(1), 10–15.

Meyler, A., Kenny, G. & Quinn, T. (1998). Forecasting Irish inflation using ARIMA models [Technical Paper 3/RT/98]. Dublín: Central Bank of Ireland. Available: https://www.centralbank.ie/docs/default-source/publications/research-technicalpapers/3rt98---forecasting-irish-inflation-using-arima-models-(kenny-meylerand-quinn).pdf

Phillips, P. & Perron, P. (1988). Testing for a unit root in time series regression. Biometricka, 75(2), 335–346. https://doi.org/10.2307/2336182

República de Colombia. MinAgricultura. (2021). Cadena productiva de la mora Dirección de Cadenas Agrícolas y Forestales. Marzo de 2021. Bogotá, D.C.: Minagricultura.Recuperado de https://sioc.minagricultura.gov.co/Mora/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf

Restrepo, M., Luna-Ramirez, J. & Castaño-Quintero, V. (2019). Evaluation of the shelf-life of blackberry pulp fortified with physiologically active compounds. Respuestas, 24(2), 16–26. Available: https://revistas.ufps.edu.co/index.php/respuestas/article/download/1827/2203?inline=1

Sánchez-López, E., Barreras-Serrano, A., Pérez-Linares, C., Figueroa-Saavedra, F. & Olivas-Valdez, J. (2013). Using an ARIMA model to forecast bovine milk production in Baja California, México. Tropical and Subtropical Agroecosystems, 16(3), 315–324. Available: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1290

Ullah, A., Khan, D. & Zheng, S. (2018). Forecasting of peach area and production wise econometric analysis. The Journal of Animal & Plant Sciences, 28(4), 1121–1127. Available: http://www.thejaps.org.pk/docs/v-28-04/23.pdf

Published

2022-08-22 — Updated on 2022-08-22

How to Cite

Cancino, S. E., Cancino Escalante, G. O., & Cancino Ricketts, D. F. (2022). Modeling and forecasting blackberry production in Colombia using a Box Jenkins ARIMA approach. ECONÓMICAS CUC, 44(1), 69–82. https://doi.org/10.17981/econcuc.44.1.2023.Econ.4

Issue

Section

Articles: Economy and Finance

Most read articles by the same author(s)