Use of biostimulants in fruiting crops’ sustainable management: A narrative review
Keywords:
Agroecosystems, fruticulture, orchards, sustainability, bioinputsAbstract
Introduction: On a global scale, the obstacles to fruticulture correspond to the lack of skilled labor, the limited amount of available arable land, and the high costs of acquiring fertilizers and pesticides. These inconveniences, linked to environmental impacts and ecotoxicological damage, indicate that scientists, industries, and fruit growers have shown interest in the development of biotools for fruiting crops’ management aiming at orchards’ optimal production, such as biostimulants. This bioinput stimulates plant nutrition processes independently of the product’s nutrient content, aiming to improve efficiency in the use of nutrients, tolerance to abiotic stress, and the quality and availability characteristics of nutrients available in the growth medium. Objective: Thus, this narrative review aims to analyze the state-of-the-art regarding the use of biostimulants in fruticulture, compile information on the proper application of these bioinputs and present alternatives to the diffusion of biostimulants in fruit agroecosystems. The totality of bioestimulants’ action mechanisms still needs to be better understood. Results: The applicability of biostimulants in the management of fruiting crops proved to be a relevant possibility to grant sustainability to production systems in fruticulture and reduce costs, increasing productivity, shelf life, and reducing damage caused by climatic adversities in crops, mainly hydric stress. Conclusions: The development of specific legislation for biostimulants should contribute substantially to generating credibility with farmers in order to differentiate, for example, foliar fertilizers and microbial agents.
Downloads
References
Araujo, L., Pinto, F. A., Vieira, J., Pasa, M., Valdebenito-Sanhueza, R. M. y Stadnik, M. (2020). Uso de bioestimulantes para o manejo da sarna da macieira em pomares. Agropecuária Catarinense, 33(3), 60–66. https://doi.org/10.52945/rac.v33i3.751
Basile, B., Rouphael, Y., Colla, G., Soppelsa, S. & Andreotti, C. (2020). Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Scientia Horticulturae, 267, 1–10. https://doi.org/10.1016/j.scienta.2020.109330
Bitterlich, M., Rouphael, Y., Graefe, J. & Franken, P. (2018). Arbuscular mycorrhizas: A promising component of plant production systems provided favorable conditions for their growth. Frontiers in Plant Science, 9, 1–6. https://doi.org/10.3389/fpls.2018.01329
Bulgari, R., Franzoni, G. & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9, 1–30. https://doi.org/10.3390/agronomy9060306
Calvo, P., Nelson, L. & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1), 3–41. https://doi.org/10.1007/s11104-014-2131-8
Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P. & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27. https://doi.org/10.1016/j.scienta.2015.09.013
Cao, M.-A., Wang, P., Hashem, A., Wirth, S., Abd_Allah, E. F. & Wu, Q.-S. (2021). Field inoculation of arbuscular mycorrhizal fungi improves fruit quality and root physiological activity of citrus. Agriculture, 11(12), 1–9. https://doi.org/10.3390/agriculture11121297
Caporal, F. R. (2020). Transição agroecológica e o papel da extensão rural. Extensão Rural, 27(3), 7–19. https://doi.org/10.5902/2318179638420
Castiglione, A. M., Mannino, G., Contartese, V., Bertea, C. M. & Ertani, A. (2021). Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants, 10(8), 1–25. https://doi.org/10.3390/plants10081533
Cavalcante, I. H. L., Da Silva, R. R. S., Albano, F. G., De Lima, F. N. & Marques, A. (2011). Foliar spray of humic substances on seedling production of papaya (pawpaw). Journal of Agronomy, 10(4), 118–122. https://doi.org/10.3923/ja.2011.118.122
Cavalcante, W., Da Silva, N., Teixeira, M., Filho, F., Nascimento, P. E. & Corrêa, F. (2020). Eficiência dos bioestimulantes no manejo do déficit hídrico na cultura da soja. Irriga, 25(4), 754–763. https://doi.org/10.15809/irriga.2020v25n4p754-763
Chen, K., Kleijn, D., Scheper, J. & Fijen, T. P. M. (2022). Additive and synergistic effects of arbuscular mycorrhizal fungi, insect pollination and nutrient availability in a perennial fruit crop. Agriculture, Ecosystems & Environment, 325, 1–8. https://doi.org/10.1016/j.agee.2021.107742
Chiomento, J. L., Filippi, D., Krasnievicz, G. M., De Paula, J. E., Fornari, M. & Trentin, T. (2022). Arbuscular mycorrhizal fungi potentiate the root system and the quality of goldenberry fruits. Advances in Horticultural Science, 36(4), 265–273. https://doi.org/10.36253/ahsc-13352
Chiomento, J. L., De Nardi, F., Filippi, D., Trentin, T., Dornelles, A., Fornari, M., Nienow, A. A. & Calvete, E. (2021). Morpho-horticultural performance of strawberry cultivated on substrate with arbuscular mycorrhizal fungi and biochar. Scientia Horticulturae, 282, 1–13. https://doi.org/10.1016/j.scienta.2021.110053
Colla, G., Cardarelli, M., Bonini, P. & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience, 52, 1214–1220. https://doi.org/10.21273/HORTSCI12200-17
Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R. & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037
Colla, G. & Rouphael, Y. (2015). Biostimulants in horticulture. Scientia Horticulturae, 196, 1–2. http://dx.doi.org/10.1016/j.scienta.2015.10.044
Concheri, G., Nardi, S., Reniero, F. & Dell’Agnola, G. (1996). Structural characteristics and biological activities of humic substances within the Ah horizon (Calcic-Luvisol). Plant and Soil, 179, 65–72. https://www.springer.com/journal/11104
Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23, 371–393. https://doi.org/10.1007/s10811-010-9560-4
De Pascale, S., Rouphael, Y. & Colla, G. (2017). Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science, 82(6), 277–285. http://dx.doi.org/10.17660/eJHS.2017/82.6.2
Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196(1), 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
Ertani, A., Schiavon, M. & Nardi, S. (2017). Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicum L. in response to an alfalfa-protein hydrolysate using microarrays. Frontiers in Plant Science, 8, 1–19. https://doi.org/10.3389/fpls.2017.01159
Ertani, A., Francioso, O., Tinti, A., Schiavon, M., Pizzeghello, D. & Nardi, S. (2018). Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Frontiers in Plant Science, 9(1), 1–13. https://doi.org/10.3389/fpls.2018.00428
Ertani, A., Pizzeghello, D., Francioso, O., Sambo, P., Sanchez-Cortes, S. & Nardi, S. (2014). Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Frontiers in Plant Science, 5, 1–12. https://doi.org/10.3389/fpls.2014.00375
Erturk, Y., Ercisli, S., Haznedar, A. & Cakmakci, R. (2010). Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biological Research, 43(1), 91–98. http://dx.doi.org/10.4067/S0716-97602010000100011
EU. European Parliament and of The Council. (2019). Regulation (EU) 2019/1009, laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Official Journal of the European Union, L 170/1, of 5 June 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R1009
Fadiji, A. E., Babalola, O. O., Santoyo, G. & Perazzolli, M. (2022). The potential role of microbial biostimulants in the amelioration of climate change-associated abiotic stresses on crops. Frontiers in Microbiology, 12, 1–17. https://doi.org/10.3389/fmicb.2021.829099
Fenili, C. L., Petri, J., Steffens, C. A., De Martin, M., Do Amarante, C. V. & Heinzen, A. (2019). Alternatives to increase the red color of the peel in ‘Daiane’ and ‘Venice’ apples. Revista Brasileira de Fruticultura, 41(2), 1–11. https://doi.org/10.1590/0100-29452019128
Ferreira, G., Costa, P. N., Ferrari, T., Rodrigues, J., Braga, J. & Jesus, F. (2007). Emergência e desenvolvimento de plântulas de maracujazeiro azedo oriundas de sementes tratadas com bioestimulante. Revista Brasileira de Fruticultura, 29(3), 595–599. https://doi.org/10.1590/S0100-29452007000300034
Garcia-Seco, D., Zhang, Y., Gutierrez-Mañero, F. J., Martin, C. & Ramos-Solano, B. (2015). Application of Pseudomonas fluorescens to Blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One, 10(11), 1–23. https://doi.org/10.1371/journal.pone.0142639
Gomes, F. A., Santos, A., Da Silva, G., Da Silva, M., Correa, M. A., Gomes, Y. B., Batista, M. & Araújo, R. H. C. (2019). Potencial do uso de nanopartículas de microalgas na produção de romãzeira. Meio Ambiente, 1(2), 31–40. https://meioambientebrasil.com.br/index.php/MABRA/article/view/32
Gonçalves, B. H., Souza, J. M., Ferraz, R. A., Tecchio, M. A. & Leonel S. (2018). Efeito do bioestimulante Stimulate® no desenvolvimento de mudas de maracujazeiro cv. BRS Rubi do Cerrado. Revista de Ciências Agrárias, 41(1), 147–155. https://revistas.rcaap.pt/rca/article/download/16634/13550/54564
Guedes, W., Araújo, R. H. C., Rocha, J. L., De Lima, J. F., Dias, G., De Oliveira, Á. M., De Lima, R. F. & Oliveira, L. (2018). Production of papaya seedlings using Spirulina platensis as a biostimulant applied on leaf and root. Journal of Experimental Agriculture International, 28(1), 1–9. http://dx.doi.org/10.9734/JEAI/2018/45053
Gurav, R. G. & Jadhav, J. P. (2013). A novel source of biofertilizer from feather biomass for banana cultivation. Environmental Science and Pollution Research, 20(7), 4532–4539. https://doi.org/10.1007/s11356-012-1405-z
He, X., Zhang, H., Li, J., Yang, F., Dai, W., Xiang, C. & Zhang, M. (2022). The positive effects of humic/fulvic acid fertilizers on the quality of lemon fruits. Agronomy, 12, 1–9. https://doi.org/10.3390/agronomy12081919
Ismail, S. A. A. & Ganzour, S. K. (2021). Efficiency of foliar spraying with moringa leaves extract and potassium nitrate on yield and quality of strawberry in sandy soil. International Journal of Agricultural and Statistical Sciences, 17(1), 383–398. https://connectjournals.com/03899.2021.17.383
Jindo, K., Olivares, F., Malcher, D. J., Sánchez-Monedero, M. A., Kempenaar, C. & Canellas, L. P. (2020). From lab to field: Role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Frontiers in Plant Science, 11, 1–10. https://doi.org/10.3389/fpls.2020.00426
Jindo, K., Martim, S. A., Navarro, E., Pérez-Alfocea, F., Hernandez, T., Garcia, C., Aguiar, N. & Canellas, L. P. (2012). Root growth promoting by humic acids from composted and non-composted urban organic wastes. Plant and Soil, 353, 209–220. https://doi.org/10.1007/s11104-011-1024-3
Kisvarga, S., Farkas, D., Boronkay, G., Neményi, A. & Orlóci, L. (2022). Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy, 12(5), 1–25. https://doi.org/10.3390/agronomy12051043
Kocira, A., Świeca, M., Kocira, S., Złotek, U. & Jakubczyk, A. (2018). Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi Journal of Biological Sciences, 25(3), 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039
Koo, R. (1988). Response of citrus to seaweed-based nutrient sprays. Proceedings of the Florida State Horticultural Society, 101, 26–28. https://fshs.memberclicks.net/
Kumar, H. D. & Aloke, P. (2020). Role of biostimulant formulations in crop production: An overview. International Journal of Applied Research in Veterinary Medicine, 8(2), 38–46. https://http://www.jarvm.com/
Kunicki, E., Grabowska, A., Sękara, A. & Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L). Folia Horticulturae, 22(2), 9–13. http://dx.doi.org/10.2478/fhort-2013-0153
Lehmann, J. & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60–68. https://doi.org/10.1038/nature16069
Lisiecka, J., Knaflewski, M., Spizewski, T., Fraszczak, B., Kaluzewicz, A. & Krzesinski, W. (2011). The effect of animal protein hydrolysate on quantity and quality of strawberry daughter plants cv. ‘Elsanta’. Acta Scientiarum Polonorum Hortorum Cultus, 10(1), 31–40. https://czasopisma.up.lublin.pl/index.php/asphc/article/view/3173
Lombardi, N., Caira, S., Troise, A., Scaloni, A., Vitaglione, P., Vinale, F., Marra, R., Salzano, A. M., Lorito, M. & Woo, S. L. (2020). Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and quality. Frontiers in Microbiology, 11, 1–17. https://doi.org/10.3389/fmicb.2020.01364
Mancuso, S., Azzarello, E., Mugnai, S. & Briand, X. (2006). Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Advances in Horticultural Science, 20(2), 156–161. https://www.jstor.org/stable/42882475
Mishra, A. N. & Tripathi, V. K. (2011). Influence of different levels of Azotobacter, PSB alone and in combination on vegetative growth, flowering, yield and quality of strawberry cv. Chandler. International Journal of Applied Agricultural Research, 6(3), 203–210. http://www.ripublication.com/IJAER/ijaarv6n3_01.pdf
Morales-Payan, J. P. & Stall, W. M. (2003). Papaya (Carica papaya) response to foliar treatments with organic complexes of peptides and amino acids. Proceedings of the Florida State Horticultural Society, 116, 30–32. https://journals.flvc.org/fshs/article/download/86499/83415/0
Nardi, S., Pizzeghello, D., Schiavon, M. & Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based. Scientia Agricola, 73(1), 18–23. https://doi.org/10.1590/0103-9016-2015-0006
Nargesi, M. M., Sedaghathoor, S. & Hashemabadi, D. (2022). Effect of foliar application of amino acid, humic acid and fulvic acid on the oil content and quality of olive. Saudi Journal of Biological Sciences, 29(5), 3473–3481. https://doi.org/10.1016/j.sjbs.2022.02.034
Nebbioso, A., Vinci, G., Drosos, M., Spaccini, R. & Piccolo, A. (2015). Unveiling themolecular composition of the unextractable soil organic fraction (humin) byhumeomics. Biology and Fertility of Soils, 51(4), 443–451. http://dx.doi.org/10.1007/s00374-014-0991-y
Nikolaou, N., Angelopoulos, K. & Karagiannidis, N. (2003). Effects of drought stress on mycorrhizal and non-mycorrhizal Cabernet Sauvignon grapevine, grafted onto various rootstocks. Experimental Agriculture, 39(3), 241–252. https://doi.org/10.1017/S001447970300125X
Olk, D. C., Bloom, P. R., Perdue, E. M., Mcknight, D. M., Chen, Y., Farenhorst, A., Senesi, N., Chin, Y. P., Schmitt-Kopplin, P., Hertkorn, N. & Harir, M. (2019). Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. Journal of Environmental Quality, 48(2), 217–232. https://doi.org/10.2134/jeq2019.02.0041
Pessenti, I. L., Ayub, R. A., Filho, J. L., Clasen, F., Rombaldi, C. & Botelho, R. (2022). Influence of abscisic acid, Ascophyllum nodosum and Aloe vera on the phenolic composition and color of grape berry and wine of ‘Cabernet Sauvignon’ variety. Ciência e Técnica Vitivinícola, 37(1), 1–12. https://doi.org/10.1051/ctv/ctv202237011
Piccolo, A. (2002). The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, 75, 57–134. http://dx.doi.org/10.1016/S0065-2113(02)75003-7
Pizzeghello, D., Nicolini, G. & Nardi, S. (2002). Hormone-like activities of humic substances in different forest ecosystems. New Phytologist, 155(3), 393–402. https://doi.org/10.1046/j.1469-8137.2002.00475.x
Pizzeghello, D., Nicolini, G. & Nardi, S. (2001). Hormone-like activity of humic substances in Fagus sylvaticae L. forests. New Phytologist, 151(3), 647–657. https://doi.org/10.1046/j.0028-646x.2001.00223.x
Pizzeghello, D., Francioso, O., Ertani, A., Muscolo, A. & Nardi, S. (2013). Isopentenyladenosine and cytokinin-like activity of four humic substances. Journal of Geochemical Exploration, 129, 70–75. http://dx.doi.org/10.1016/j.gexplo.2012.10.007
Popa, D. G., Lupu, C., Constantinescu-Aruxandei, D. & Oancea, F. (2022). Humic substances as microalgal biostimulants – Implications for microalgal biotechnology. Marine Drugs, 20, 1–27. https://doi.org/10.3390%2Fmd20050327
Popescu, G. C. & Popescu, M. (2018). Yield, berry quality and physiological response of grapevine to foliar humic acid application. Crop Production and Management, 77(2), 273–282. http://dx.doi.org/10.1590/1678-4499.2017030
Prasad, K., Singh, G., Singh, S. K., Pradhan, J., Kumar, U. & Singh, H. (2022). Plant extract and essential oil coating prolongs shelf life and maintains keeping quality of papaya fruit during storage. Journal of Food Processing and Preservation, 46(11), 1–15. https://doi.org/10.1111/jfpp.17015
Przybyłko, S., Kowalczyk, W. & Wrona, D. (2021). The effect of mycorrhizal fungi and PGPR on tree nutritional status and growth in organic apple production. Agronomy, 11, 1–15. https://doi.org/10.3390/agronomy11071402
Qin, L., Kang, W. H., Qi, Y. L., Zhang, Z. W. & Wang, N. (2016). The influence of silicone application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.). Acta Physiologiae Plantarum, 38(3), 1–9. http://dx.doi.org/10.1007/s11738-016-2087-9
RFB. MAPA. (2009). Instrução normativa n. 25. Normas sobre as especificações e as garantias, as tolerâncias, o registro, a embalagem e a rotulagem dos fertilizantes orgânicos simples, mistos, compostos, organominerais e biofertilizantes destinados à agricultura. Diário Oficial da União, n. 173, Seção 1, de 23 de julho de 2009. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-25-de-23-7-2009-fertilizantes-organicos.pdf/view
RFB. MAPA. (2008). Instrução normativa n. 64, Aprova o regulamento técnico para os sistemas orgânicos de produção animal e vegetal. Diário Oficial da União, n. 247, Seção 1, de 18 de dezembro de 2008. https://sistemasweb.agricultura.gov.br/conjurnormas/index.php/INSTRU%C3%87%C3%83O_NORMATIVA_N%C2%BA_64,_DE_18_DE_DEZEMBRO_DE_2008
RFB. Presidência da República. (2004). Decreto n. 4.954, Aprova o Regulamento da Lei nº 6.894, de 16 de dezembro de 1980, que dispõe sobre a inspeção e fiscalização da produção e do comércio de fertilizantes, corretivos, inoculantes ou biofertilizantes destinados à agricultura, e dá outras providências. Diário Oficial da União, Seção 1 - 15/1/2004, Página 2 (Publicação Original). https://www2.camara.leg.br/legin/fed/decret/2004/decreto-4954-14-janeiro-2004-497758-normaatualizada-pe.html
Rodrigues, M., Baptistella, J. L., Horz, D. C., Bortolato, L. & Mazzafera, P. (2020). Organic plant biostimulants and fruit quality - A review. Agronomy, 10, 1–16. https://doi.org/10.3390/agronomy10070988
Rouphael, Y. & Colla, G. (2020). Editorial. Plant biostimulants: Rationale, state of the art and evolution. Frontiers in Plant Science, 11(40), 1–7. http://dx.doi.org/10.3389/fpls.2020.00040
Rouphael, Y. & Colla, G. (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1–7. https://doi.org/10.3389/fpls.2018.01655
Rouphael, Y., Kyriacou, M. C., Petropoulos, S. A., De Pascale, S. & Colla, G. (2018). Improving vegetable quality in controlled environments. Scientia Horticulturae, 234, 275–289. https://doi.org/10.1016/j.scienta.2018.02.033
Rouphael, Y., Colla, G., Graziani, G., Ritieni, A., Cardarelli, M. & De Pascale, S. (2017). Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chemistry, 234, 10–19. https://doi.org/10.1016/j.foodchem.2017.04.175
Sabir, A. (2013). Improvement of grafting efficiency in hard grafting grape Berlandieri hybrid rootstocks by plant growth-promoting rhizobacteria (PGPR). Scientia Horticulturae, 164, 24–29. https://doi.org/10.1016/j.scienta.2013.08.035
Schaafsma, G. (2009). Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. European Journal of Clinical Nutrition, 63(10), 1161–1168. https://doi.org/10.1038/ejcn.2009.56
Schoebitz, M., López, M. D., Serrí, H., Martínez, O. & Zagal, E. (2016). Combined application of microbial consortium and humic substances to improve the growth performance of blueberry seedlings. Journal of Soil Science and Plant Nutrition, 16(4), 1010–1023. http://dx.doi.org/10.4067/S0718-95162016005000074
Şesan, T. E., Oancea, A. O., Ştefan, L. M., Mănoiu, V. S., Ghiurea, M., Răut, I., Constantinescu-Aruxandei, D., Toma, A., Savin, S., Bira, A. F., Pomohaci, C. M. & Oancea, F. (2020). Effects of foliar treatment with a Trichoderma plant biostimulant consortium on Passiflora caerulea L. yield and quality. Microorganisms, 8, 1–27. https://doi.org/10.3390/microorganisms8010123
Sestili, F., Rouphael, Y., Cardarelli, M., Pucci, A., Bonini, P., Canaguier, R. & Colla, G. (2018). Protein hydrolysate stimulates growth and N uptake in tomato coupled with N-dependent gene expression involved in N assimilation. Frontiers in Plant Science, 9, 1–11. https://doi.org/10.3389/fpls.2018.01233
Soppelsa, S., Kelderer, M., Testolin, R., Zanotelli, D. & Andreotti, C. (2020). Effect of biostimulants on apple quality at harvest and after storage. Agronomy, 10, 1–18. https://doi.org/10.3390/agronomy10081214
Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P. & Andreotti, C. (2018). Use of biostimulants for organic apple production: Effects on tree growth, yield, and fruit quality at harvest and during storage. Frontiers in Plant Science, 9, 1–17. https://doi.org/10.3389/fpls.2018.01342
Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A. & Andreotti, C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9, 1–22. https://doi.org/10.3390/agronomy9090483
Spann, T. & Little, H. (2011). Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container. HortScience, 46(4), 577–582. https://doi.org/10.21273/HORTSCI.46.4.577
Vendruscolo, E. P., Bortolheiro, F. P. A. P., Martins, M. B., Campos, L. F. C., Seleguini, A. & De Lima, S. F. (2020). Do planting methods and nitrogen management interfere with the economic viability of the melon crop? Comunicata Scientiae, 11, 1–17. https://doi.org/10.14295/cs.v11i0.3127
Viera, W., Noboa, M., Martínez, A., Báez, F., Jácome, R., Medina, L. & Jackson, T. (2019). Trichoderma asperellum increases crop yield and fruit weight of blackberry (Rubus glaucus) under subtropical Andean conditions. Vegetos, 32(2), 209–215. https://doi.org/10.1007/s42535-019-00024-5
Wang, H., Zhang, R., Mao, Y., Jiang, W., Chen, X., Shen, X., Yin, C. & Mao, Z. (2022). Effects of Trichoderma asperellum 6S-2 on apple tree growth and replanted soil microbial environment. Journal of Fungi, 8(1), 1–18. https://doi.org/10.3390/jof8010063
Wally, O. S. D., Critchley, A. T., Hiltz, D., Craigie, J. S., Han, X., Zaharia, L. I., Abrams, S. R. & Prithiviraj, B. (2013). Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32(2), 324–339. http://dx.doi.org/10.1007/s00344-012-9301-9
Woo, S. L. & Pepe, O. (2018). Microbial consortia: Promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1–6. https://doi.org/10.3389/fpls.2018.01801
Wu, H.-H., Zou, Y.-N., Rahman, M. M., Ni, Q.-D. & Wu, Q.-S. (2017). Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scientific Reports, 7, 1–10. https://doi.org/10.1038/srep42389
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A. & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 1–32. https://doi.org/10.3389/fpls.2016.02049
Yu, X., Liu, X., Zhu, T. H., Liu, G. H. & Mao, C. (2012). Co-inoculation with phosphate-solubilizing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. European Journal of Soil Biology, 50, 112–117. http://dx.doi.org/10.1016/j.ejsobi.2012.01.004
Yu, Y. Y., Xu, J. D., Huang, T. X., Zhong, J., Yu, H., Qiu, J. P. & Guo, J. H. (2020). Combination of beneficial bacteria improves blueberry production and soil quality. Food Science & Nutrition, 8(11), 5776–5784. https://doi.org/10.1002%2Ffsn3.1772
Zhang, F., He, J.-D., Ni, Q. D., Wu, Q. S. & Zou, Y. N. (2018). Enhancement of drought tolerance in trifoliate orange by mycorrhiza: Changes in root sucrose and proline metabolisms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 270–276. https://doi.org/10.15835/nbha46110983
Zhang, X. & Schmidt, R. E. (1997). The impact of growth regulators on alpha-tocopherol status of water-stressed Poa pratensis L. International Turfgrass Society Research Journal, 8(2), 1364–1373. https://onlinelibrary.wiley.com/journal/25731513
Zulfiqar, F., Casadesús, A., Brockman, H. & Munné-Bosch, S. (2020). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science, 295, 1–10. https://doi.org/10.1016/j.plantsci.2019.110194

Published
How to Cite
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.