Potencial fitoquímico de las bayas: Una descripción general

Autores/as

  • Talison Roberto Maurer University of Passo Fundo
  • Carolina Tonello University of Passo Fundo
  • Bianca Machado University of Passo Fundo
  • Thomas Trentin University of São Paulo
  • Charise Bertol University of Passo Fundo
  • Nadia Lângaro University of Passo Fundo
  • José Luís Trevizan Chiomento University of Passo Fundo

Palabras clave:

Fruticultura, frutos pequeños, metabolitos secundarios, biomoléculas

Resumen

Introducción: Los fitoquímicos, o metabolitos secundarios, presentes en las frutas pequeñas son los responsables de mejorar la salud de los consumidores cuando se incluyen en la dieta diaria. Todas las formas comestibles de bayas se consideran alimentos funcionales seguros porque tienen propiedades nutricionales y potencial terapéutico. Objetivo­: Por lo tanto, esta revisión narrativa tiene como objetivo analizar el estado del arte sobre el potencial fitoquímico de los seis principales frutos pequeños (mora, physalis, frambuesa, arándano, fresa y uva), para recopilar información sobre la aplicación de estrategias que permitan obtener bayas con mayores concentraciones de biomoléculas y presentar los beneficios de los fitoquímicos al público consumidor. Metodología: En la primera etapa de esta revisión narrativa, se contextualiza el escenario de cultivo de estas seis bayas principales. Posteriormente, se realiza una metasíntesis temporal sobre fitoquímicos en bayas. En la última parte de esta revisión, se detalla el perfil de biomoléculas de mora, physalis, frambuesa, arándano, fresa y uva y nos enfocamos en su acción contra las enfermedades. Resultados: El consumo de estas seis bayas desencadena acciones antidiabéticas, antiinflamatorias, anticancerígenas, antienvejecimiento, antiobesidad, antimicrobianas, antiulcerosas y radioprotectoras, neuroprotectoras y glucorreguladoras. A pesar de las evidencias científicas y clínicas sobre los efectos positivos del consumo de frutos pequeños en la salud humana, su consumo sigue siendo bajo. Conclusiones: La creación de políticas públicas contribuirá a mejorar el escenario de la ingesta de berries porque involucrará a la totalidad de la cadena productiva de la pequeña fruta: científicos, productores, industrias alimenticia y farmacéutica y consumidores.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acosta-Montoya, Ó., Vaillant, F., Cozzano, S., Mertz, C., Pérez, A. M. & Castro, M. V. (2010). Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chemistry, 119(4), 1497–1501. http://dx.doi.org/10.1016/j.foodchem.2009.09.032

Agarwal, P., Wang, Y., Holland, T., Bennett, D. & Morris, M. (2019). Strawberry consumption associated with reduced Alzheimer’s dementia risk (FS05-06-19). Current Developments in Nutrition, 3(Suppl 1), 1–11. https://doi.org/10.1093%2Fcdn%2Fnzz052.FS05-06-19

Ali, K., Maltese, F., Choi, Y. H. & Verpoorte, R. (2010). Metabolic constituents of grapevine and grape-derived products. Phytochemistry Reviews, 9(3), 357–378. https://doi.org/10.1007/s11101-009-9158-0

Asbaghi, O., Naeini, F., Moodi, V., Najafi, M., Shirinbakhshmasoleh, M., Kelishadi, M. R., Hadi, A., Ghaedi, E. & Fadel, A. (2021). Effect of grape products on blood pressure: A systematic review and meta-analysis of randomized controlled trials. International Journal of Food Properties, 24(1), 627–645. https://doi.org/10.1080/10942912.2021.1901731

Buran, T. J., Sandhu, A. K., Li, Z., Rock, C. R., Yang, W. W. & Gu, L. (2014). Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. Journal of Food Engineering, 128, 167–173. http://dx.doi.org/10.1016/j.jfoodeng.2013.12.029

Burton-Freeman, B. M., Sandhu, A. K. & Edirisinghe, I. (2016). Red raspberries and their bioactive polyphenols: Cardiometabolic and neuronal health links. Advances in Nutrition, 7(1), 44–65. https://doi.org/10.3945/an.115.009639

Chai, Z., Herrera-Balandrano, D. D., Yu, H., Beta, T., Zeng, Q., Zhang, X., Tian, L., Niu, L. & Huang, W. (2021). A comparative analysis on the anthocyanin composition of 74 blueberry cultivars from China. Journal of Food Composition and Analysis, 102(4), 1–10. https://doi.org/10.1016/j.jfca.2021.104051

Chaves, V. C., Calvete, E. O. & Reginatto, F. H. (2017). Quality properties and antioxidant activity of seven strawberry (Fragaria x ananassa Duch.) cultivars. Scientia Horticulturae, 225(10), 293–298. http://dx.doi.org/10.1016/j.scienta.2017.07.013

Chen, L., Xin, X., Zhang, H. & Yuan, Q. (2013). Phytochemical properties and antioxidant capacities of commercial raspberry varieties. Journal of Functional Foods, 5(1), 508–515. https://doi.org/10.1016/j.jff.2012.10.009

Chiomento, J. L., De Nardi, F. S., Filippi, D., Trentin, T. S., Dornelles, A. G., Fornari, M., Nienow, A. A. & Calvete, E. O. (2021). Morpho-horticultural performance of strawberry cultivated on substrate with arbuscular mycorrhizal fungi and biochar. Scientia Horticulturae, 282, 1–10. https://doi.org/10.1016/j.scienta.2021.110053

Chiomento, J. L., De Nardi, F. S., Kujawa, S. C., Deggerone, Y. S., Fante, R., Kaspary, I. J., Dornelles, A. G., Huzar-Novakowiski, J. & Trentin, T. S. (2023). Multivariate contrasts of seven strawberry cultivars in soilless cultivation and greenhouse in southern Brazil. Advanced Chemicobiology Research, 2(1), 62–76. https://doi.org/10.37256/acbr.2120232332

Chiomento, J. L., Lima Júnior, E. P., D’Agostini, M., De Nardi, F. S., Trentin, T. S., Dornelles, A. G., Huzar-Novakowiski, J. & Calvete, E. O. (2021). Horticultural potential of nine strawberry cultivars by greenhouse production in Brazil: A view through multivariate analysis. Scientia Horticulturae, 279, 1–10. https://doi.org/10.1016/j.scienta.2020.109738

Chong, M. F., Macdonald, R. & Lovegrove, J. A. (2010). Fruit polyphenols and CVD risk: A review of human intervention studies. British Journal of Nutrition, 104(Suppl 3), 28–39. https://doi.org/10.1017/s0007114510003922

Clifford, M. N. & Scalbert, A. (2000). Ellagitannins: Nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1118–1125. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7%3C1118::AID-JSFA570%3E3.0.CO;2-9

Correa-Betanzo, J., Padmanabhan, P., Corredig, M., Subramanian, J. & Paliyath, G. (2015). Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity. Journal of Agricultural and Food Chemistry, 63(11), 2935–2946. https://doi.org/10.1021/acs.jafc.5b00016

Cvetković, M., Kočić, M., Dabić Zagorac, D., Ćirić, I., Natić, M., Hajder, Đ., Životić, A. & Fotirić Akšić, M. (2022). When is the right moment to pick blueberries? Variation in agronomic and chemical properties of blueberry (Vaccinium corymbosum) cultivars at different harvest times. Metabolites, 12(9), 1–19. https://doi.org/10.3390/metabo12090798

De Pascual-Teresa, S., Moreno, D. A. & Garcia-Viguera, C. (2010). Flavanols and anthocyanins in cardiovascular health: A review of current evidence. International Journal of Molecular Sciences, 11(4), 1679–1703. https://doi.org/10.3390%2Fijms11041679

Diaconeasa, Z., Florica, R., Rugină, D., Lucian, C. & Socaciu, C. (2014). HPLC/PDA–ESI/MS Identification of phenolic acids, flavonol glycosides and antioxidant potential in blueberry, blackberry, raspberries and cranberries. Journal of Food and Nutrition Research, 2(11), 781–785. https://doi.org/10.12691/jfnr-2-11-4

Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C. & Restani, P. (2021). Polyphenols and human health: The role of bioavailability. Nutrients, 13(1), 1–30. https://doi.org/10.3390%2Fnu13010273

Ding, Y., Zhang, B., Zhou, K., Chen, M., Wang, M., Jia, Y., Song, Y., Li, Y. & Wen, A. (2014). Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: Role of Nrf2 activation. International Journal of Cardiology, 175(3), 508–514. https://doi.org/10.1016/j.ijcard.2014.06.045

Draelos, Z., Dahl, A., Yatskayer, M., Chen, N., Krol, Y. & Oresajo, C. (2013). Dyspigmentation, skin physiology, and a novel approach to skin lightening. Journal of Cosmetic Dermatology, 12(4), 247–253. https://doi.org/10.1111/jocd.12066

Duarte, L. J., Chaves, V. C., Nascimento, M. V. P. S., Calvete, E. O., Li, M., Ciraolo, E., Ghigo, A., Hirsch, E., Simões, C. M. O., Reginatto, F. H. & Dalmarco, E. M. (2018). Molecular mechanism of action of pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chemistry, 247, 56–65. https://doi.org/10.1016/j.foodchem.2017.12.015

Etzbach, L., Pfeiffer, A., Weber, F. & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry, 245, 508–517. https://doi.org/10.1016/j.foodchem.2017.10.120

Felgus-Lavefve, L., Howard, L., Adams, S. H. & Baum, J. I. (2022). The effects of blueberry phytochemicals on cell models of inflammation and oxidative stress. Advances in Nutrition, 13(4), 1279–1309. https://doi.org/10.1093/advances/nmab137

Feng, R., Bowman, L. L., Lu, Y., Leonard, S. S., Shi, X., Jiang, B. H., Castranova, V., Vallyathan, V. & Ding, M. (2004). Blackberry extracts inhibit activating protein 1 activation and cell transformation by perturbing the mitogenic signaling pathway. Nutrition and Cancer, 50(1), 80–89. https://doi.org/10.1207/s15327914nc5001_11

Ferreira, D. S., Rosso, V. V. & Mercadante, A. Z. (2010). Bioactive compounds of blackberry fruits (Rubus spp.) grown in Brazil. Revista Brasileira de Fruticultura, 32(3), 664–674. https://doi.org/10.1590/S0100-29452010005000110

Folmer, F., Basavaraju, U. & Jaspars, M. (2014). Anticancer effects of bioactive berry compounds. Phytochemistry Reviews, 13, 295–322. https://doi.org/10.1007/s11101-013-9319-z

Forbes-Hernández, T. Y., Cianciosi, D., Ansary, J., Mezzetti, B., Bompadre, S., Quiles, J. L., Giampieri, F. & Battino, M. (2020). Strawberry (Fragaria × ananassa cv. Romina) methanolic extract promotes browning in 3T3-L1 cells. Food & Function, 11(1), 297–304. https://doi.org/10.1039/C9FO02285F

Gancel, A. L., Feneuil, A., Acosta, O., Pérez, A. M. & Vaillant, F. (2011). Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International, 44(7), 2243–2251. http://dx.doi.org/10.1016/j.foodres.2010.06.013

Garcia-Seco, D., Zhang, Y., Gutierrez-Mañero, F. J., Martin, C. & Ramos-Solano, B. (2015). Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One, 10(11), 1–23. https://doi.org/10.1371/journal.pone.0142639

Giampieri, F., Alvarez-Suarez, J. M., Mazzoni, L., Forbes-Hernandez, T. Y., Gasparrini, M., Gonzàlez-Paramàs, A. M. & Battino, M. (2014). An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food & Function, 5(8), 1939–1948. https://doi.org/10.1039/c4fo00048j

Giampieri, F., Forbes-Hernandez, T. Y., Gasparrini, M., Alvarez-Suarez, J. M., Afrin, S., Bompadre, S., Quiles, J. L., Mezzetti, B. & Battino, M. (2015). Strawberry as a health promoter: An evidence based review. Food & Function, 6(5), 1386–1398. https://doi.org/10.1039/c5fo00147a

Giusti, M. M. & Jing, P. (2007). Natural pigments of berries: functionality and application. In Y. Zhao, Berry Fruit. Value-Added Products for Health Promotion (pp. 105–146). CRC Press. https://doi.org/10.1201/9781420006148

Gowd, V., Bao, T., Wang, L., Huang, Y., Chen, S., Zheng, X., Cui, S. & Chen, W. (2018). Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chemistry, 269, 618–627. https://doi.org/10.1016/j.foodchem.2018.07.020

Howard, L. R., Brownmiller, C. & Prior, R. L. (2014). Improved color and anthocyanin retention in strawberry puree by oxygen exclusion. Journal of Berry Research, 4(2), 107–116. https://doi.org/10.3233/JBR-140072

Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52(39), 1–25. https://doi.org/10.1186/s40659-019-0246-3

Jamwal, K., Bhattacharya, S. & Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 26–38. https://doi.org/10.1016/j.jarmap.2017.12.003

Johnson, I. T. (2002). Glucosinolates in the human diet. Bioavailability and implications for health. Phytochemistry Reviews, 1, 183–188. https://doi.org/10.1023/A:1022507300374

Joshipura, K. J., Hu, F. B., Manson, J. E., Stampfer, M. J., Rimm, E. B., Speizer, F. E. & Willett, W. C. (2001). The effect of fruit and vegetable intake on risk for coronary heart disease. Annals of Internal Medicine, 134(12), 1106–1114. https://doi.org/10.7326/0003-4819-134-12-200106190-00010

Kähkönen, M., Kylli, P., Ollilainen, V., Salminen, J. P. & Heinonen, M. (2012). Antioxidant activity of isolated ellagitannins from red raspberries and cloudberries. Journal of Agricultural and Food Chemistry, 60(5), 1167–1174. https://doi.org/10.1021/jf203431g

Kalea, A. Z., Lamari, F. N., Theocharis, A. D., Cordopatis, P., Schuschke, D. A., Karamanos, N. K., Klimis-Zacas, D. J. (2006). Wild blueberry (Vaccinium angustifolium) consumption affects the composition and structure of glycosaminoglycans in Sprague-Dawley rat aorta. Journal of Nutritional Biochemistry, 17(2), 109–116. https://doi.org/10.1016/j.jnutbio.2005.05.015

Kalt, W., Cassidy, A., Howard, L. R., Krikorian, R., Stull, A. J., Tremblay, F. & Zamora-Ros, R. (2020). Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition, 11(2), 224–236. https://doi.org/10.1093/advances/nmz065

Kiselev, K. V., Aleynova, O. A., Grigorchuk, V. P. & Dubrovina, A. S. (2017). Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta, 245(1), 151–159. https://doi.org/10.1007/s00425-016-2598-z

Kist, B. B., Carvalho, C. & Beling, R. R. (2022). Anuário Brasileiro de Horti e Fruti. Editora Gazeta. https://www.editoragazeta.com.br/produto/anuario-brasileiro-de-horti-fruti-2022/

Knobloch, T. J., Uhrig, L. K., Pearl, D. K., Casto, B. C., Warner, B. M., Clinton, S. K., Sardo-Molmenti, C. L., Ferguson, J. M., Daly, B. T., Riedl, K., Schwartz, S. J., Vodovotz, Y., Buchta Sr, A. J., Schuller, D. E., Ozer, E., Agrawal, A. & Weghorst, C. M. (2016). Suppression of pro-inflammatory and pro-survival biomarkers in oral cancer patients consuming a black raspberry phytochemical-rich troche. Cancer Prevention Research, 9(2), 159–171. https://doi.org/10.1158/1940-6207.capr-15-0187

Kolniak-Ostek, J., Kucharska, A. Z., Sokół-Łętowska, A. & Fecka, I. (2015). Characterization of phenolic compounds of thorny and thornless blackberries. Journal of Agricultural and Food Chemistry, 63(11), 3012–3021. https://doi.org/10.1021/jf5039794

Kumar, A., Mosa, K. A., Ji, L., Kage, U., Dhokane, D., Karre, S., Madalageri, D. & Pathania, N. (2018). Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Critical Reviews in Food Science and Nutrition, 58(11), 1791–1807. https://doi.org/10.1080/10408398.2017.1285752

Lara, M. V., Bonghi, C., Famiani, F., Vizzotto, G., Walker, R. P. & Drincovich, M. F. (2020). Stone fruit as biofactories of phytochemicals with potential roles in human nutrition and health. Frontiers in Plant Science, 11, 1–21. https://doi.org/10.3389/fpls.2020.562252

Li, D., Zhang, Y., Liu, Y., Sun, R. & Xia, M. (2015). Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. Journal of Nutrition, 145(4), 742–748. https://doi.org/10.3945/jn.114.205674

Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition, 4(3), 384S–392S. https://doi.org/10.3945/an.112.003517

Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. The Journal of Nutrition, 134(12 Suppl), 3479S–3485S. https://doi.org/10.1093/jn/134.12.3479s

Liu, Y., Liu, M., Li, B., Zhao, J.-L., Zhang, C.-P., Lin, L.-Q., Chen, H.-S., Zhang, J.-S., Jin, J.-C., Wang, L., Li, L.-J. & Liu, J.-R. (2010). Fresh raspberry phytochemical extract inhibits hepatic lesion in a Wistar rat model. Nutrition & Metabolism, 7(84), 1–8. https://doi.org/10.1186/1743-7075-7-84

Maksimović, J. J. D., Milivojević, J. M., Poledica, M. M., Nikolić, M. D. & Maksimović, V. M. (2013). Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss Polka). Journal of Food Composition and Analysis, 31(2), 173–179. http://dx.doi.org/10.1016/j.jfca.2013.05.008

Matarese, F., Cuzzola, A., Scalabrelli, G. & D’Onofrio, C. (2014). Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera. Phytochemistry, 105, 12–24. https://doi.org/10.1016/j.phytochem.2014.06.007

Mazova, N., Popova, V. & Stoyanova, A. (2020). Phytochemical composition and biological activity of Physalis spp.: A mini-review. Food Science and Applied Biotechnology, 3(1), 56–70. http://dx.doi.org/10.30721/fsab2020.v3.i1.80

Monjotin, N., Amiot, M. J., Fleurentin, J., Morel, J. M. & Raynal, S. (2022). Clinical evidence of the benefits of phytonutrients in human healthcare. Nutrients, 14, 1–54. https://doi.org/10.3390%2Fnu14091712

Muñoz, P., Parra, F., Simirgiotis, M. J., Sepúlveda-Chavera, G. F. & Parra, C. (2021). Chemical characterization, nutritional and bioactive properties of Physalis peruviana fruit from high areas of the Atacama Desert. Foods, 10(11), 1–13. https://doi.org/10.3390/foods10112699

Olivares-Tenorio, M. L., Verkerk, R., Van Boekel, M. A. J. S. & Dekker, M. (2017). Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.). Journal of Functional Foods, 32, 46–57. https://doi.org/10.1016/j.jff.2017.02.021

Pant, P., Pandey, S. & Dall’Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry & Biodiversity, 18(11), 1–14. https://doi.org/10.1002/cbdv.202100345

Ramakrishna, A. & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. https://doi.org/10.4161%2Fpsb.6.11.17613

Rao, A. V. & Snyder, D. M. (2010). Raspberries and human health: A review. Journal of Agricultural and Food Chemistry, 58(7), 3871–3883. https://doi.org/10.1021/jf903484g

Reis, J. F., Monteiro, V. V. S., Souza Gomes, R., Carmo, M. M., Costa, G. V., Ribera, P. C. & Monteiro, M. C. (2016). Action mechanism and cardiovascular effect of anthocyanins: A systematic review of animal and human studies. Journal of Translational Medicine, 14(1), 1–16. https://doi.org/10.1186/s12967-016-1076-5

Renaud, S. & De Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 339(8808), 1523–1526. https://doi.org/10.1016/0140-6736(92)91277-f

Rienth, M., Vigneron, N., Darriet, P., Sweetman, C., Burbidge, C., Bonghi, C., Walker, R. P., Famiani, F. & Castellarin, S. D. (2021). Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario: A review. Frontiers in Plant Science, 12, 1–26. https://doi.org/10.3389/fpls.2021.643258

Roth, S., Spalinger, M. R., Gottier, C., Biedermann, L., Zeitz, J., Lang, S., Weber, A., Rogler, G. & Scharl, M. (2016). Bilberry-derived anthocyanins modulate cytokine expression in the intestine of patients with ulcerative colitis. PLoS One, 11(5), 1–17. https://doi.org/10.1371/journal.pone.0154817

Sabra, A., Netticadan, T. & Wijekoon, C. (2021). Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chemistry, 12, 1–13. https://doi.org/10.1016/j.fochx.2021.100149

Sangiovanni, E., Vrhovsek, U., Rossoni, G., Colombo, E., Brunelli, C., Brembati, L., Trivulzio, S., Gasperotti, M., Mattivi, F., Bosisio, E. & Dell’Agli, M. (2013). Ellagitannins from Rubus berries for the control of gastric inflammation: in vitro and in vivo studies. PLoS One, 8(8), 1–12. https://doi.org/10.1371/journal.pone.0071762

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T. & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706. https://doi.org/10.3390/ijms161024673

Song, J., Li, Y., Ge, J., Duan, Y., Sze, S. C. W., Tong, Y., Shaw, P. C., Ng, T. B., Tsui, K. C., Zhuo, Y. & Zhang, K. Y. (2010). Protective effect of bilberry (Vaccinium myrtillus L.) extracts on cultured human corneal limbal epithelial cells (HCLEC). Phytotherapy Research, 24(4), 520–524. https://doi.org/10.1002/ptr.2974

Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A. & Andreotti, C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9(9), 1–22. https://doi.org/10.3390/agronomy9090483

Torre, L. C. & Barritt, B. H. (1977). Quantitative evaluation of Rubus fruit anthocyanin pigments. Journal of Food Science, 42(2), 488–490. https://doi.org/10.1111/j.1365-2621.1977.tb01528.x

Torres-Urrutia, C., Guzman, L., Schmeda-Hirschmann, G., Moore-Carrasco, R., Alarcon, M., Astudillo, L., Gutierrez, M., Carrasco, G., Yuri, J. A., Aranda, E. & Palomo, I. (2011). Antiplatelet, anticoagulant, and fibrinolytic activity in vitro of extracts from selected fruits and vegetables. Blood Coagulation & Fibrinolysis, 22(3), 197–205. https://doi.org/10.1097/mbc.0b013e328343f7da

Tuteja, N. & Mahajan, S. (2007). Calcium signaling network in plants: An overview. Plant Signaling & Behavior, 2(2), 79–85. https://doi.org/10.4161%2Fpsb.2.2.4176

Van Breda, S. G. J., Briedé, J. J. & De Kok, T. (2018). Improved preventive effects of combined bioactive compounds present in different blueberry varieties as compared to single phytochemicals. Nutrients, 11(1), 1–14. https://doi.org/10.3390/nu11010061

Wang, S., Wang, B., Dong, K., Li, J., Li, Y. & Sun, H. (2022). Identification and quantification of anthocyanins of 62 blueberry cultivars via UPLC-MS. Biotechnology & Biotechnological Equipment, 36(1), 587–597. https://doi.org/10.1080/13102818.2022.2090857

Yamika, W. S. D., Aini, N. & Waluyo, B. (2019). Physalis peruviana L.: Growth, yield and phytochemical content - A review. Agricultural Reviews, 4(4), 147–152. http://dx.doi.org/10.18805/ag.R-130

Yoshimura, M., Watanabe, Y., Kasai, K., Yamakoshi, J. & Koga, T. (2005). Inhibitory effect of an ellagic acid-rich pomegranate extract on tyrosinase activity and ultraviolet-induced pigmentation. Bioscience, Biotechnology and Biochemistry, 69(12), 2368–2373. https://doi.org/10.1271/bbb.69.2368

Yousefi, R., Parandoosh, M., Khorsandi, H., Hosseinzadeh, N., Tonekaboni, M. M., Saidpour, A., Babaei, H. & Ghorbani, A. (2021). Grape seed extract supplementation along with a restricted-Calorie diet improves cardiovascular risk factors in obese or overweight adult individuals: A randomized, placebo-Controlled trial. Phytotherapy Research, 35(2), 987–995. https://doi.org/10.1002/ptr.6859

Zhang, L., Wang, Z. & Zhang, W. (2013). Determination of caftaric acid, p-coutaric acid and fertaric acid in grape juice, peel and seeds by ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry. Chinese Journal of Chromatography, 31(2), 122–126. https://doi.org/10.3724/sp.j.1123.2012.09047

Zhang, Y.-J., Deng, G., Ru, X., Wu, S., Li, S. & Li, H. (2013). Chemical components and bioactivities of Cape gooseberry (Physalis peruviana). International Journal of Food Nutrition and Safety, 3(1), 15–24. https://modernscientificpress.com/journals/ViewArticle.aspx?6ZIT7oAL6Lqarm6Ljqm1AEElk+hj9A+fv9GWpU/xhwwRe+2q2RWNomBD9aIj2kYX

Publicado

2023-04-09

Cómo citar

Maurer, T. R., Tonello, C., Machado, B., Trentin, T., Bertol, C., Lângaro, N., & Chiomento, J. L. T. (2023). Potencial fitoquímico de las bayas: Una descripción general. LADEe Latin American Developments in Energy Engineering, 4(1), 11–28. Recuperado a partir de https://ojstest.certika.co/IDEE/article/view/5014

Número

Sección

Artículos

Artículos más leídos del mismo autor/a