Potencial fitoquímico de las bayas: Una descripción general
Palabras clave:
Fruticultura, frutos pequeños, metabolitos secundarios, biomoléculasResumen
Introducción: Los fitoquímicos, o metabolitos secundarios, presentes en las frutas pequeñas son los responsables de mejorar la salud de los consumidores cuando se incluyen en la dieta diaria. Todas las formas comestibles de bayas se consideran alimentos funcionales seguros porque tienen propiedades nutricionales y potencial terapéutico. Objetivo: Por lo tanto, esta revisión narrativa tiene como objetivo analizar el estado del arte sobre el potencial fitoquímico de los seis principales frutos pequeños (mora, physalis, frambuesa, arándano, fresa y uva), para recopilar información sobre la aplicación de estrategias que permitan obtener bayas con mayores concentraciones de biomoléculas y presentar los beneficios de los fitoquímicos al público consumidor. Metodología: En la primera etapa de esta revisión narrativa, se contextualiza el escenario de cultivo de estas seis bayas principales. Posteriormente, se realiza una metasíntesis temporal sobre fitoquímicos en bayas. En la última parte de esta revisión, se detalla el perfil de biomoléculas de mora, physalis, frambuesa, arándano, fresa y uva y nos enfocamos en su acción contra las enfermedades. Resultados: El consumo de estas seis bayas desencadena acciones antidiabéticas, antiinflamatorias, anticancerígenas, antienvejecimiento, antiobesidad, antimicrobianas, antiulcerosas y radioprotectoras, neuroprotectoras y glucorreguladoras. A pesar de las evidencias científicas y clínicas sobre los efectos positivos del consumo de frutos pequeños en la salud humana, su consumo sigue siendo bajo. Conclusiones: La creación de políticas públicas contribuirá a mejorar el escenario de la ingesta de berries porque involucrará a la totalidad de la cadena productiva de la pequeña fruta: científicos, productores, industrias alimenticia y farmacéutica y consumidores.
Descargas
Citas
Acosta-Montoya, Ó., Vaillant, F., Cozzano, S., Mertz, C., Pérez, A. M. & Castro, M. V. (2010). Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chemistry, 119(4), 1497–1501. http://dx.doi.org/10.1016/j.foodchem.2009.09.032
Agarwal, P., Wang, Y., Holland, T., Bennett, D. & Morris, M. (2019). Strawberry consumption associated with reduced Alzheimer’s dementia risk (FS05-06-19). Current Developments in Nutrition, 3(Suppl 1), 1–11. https://doi.org/10.1093%2Fcdn%2Fnzz052.FS05-06-19
Ali, K., Maltese, F., Choi, Y. H. & Verpoorte, R. (2010). Metabolic constituents of grapevine and grape-derived products. Phytochemistry Reviews, 9(3), 357–378. https://doi.org/10.1007/s11101-009-9158-0
Asbaghi, O., Naeini, F., Moodi, V., Najafi, M., Shirinbakhshmasoleh, M., Kelishadi, M. R., Hadi, A., Ghaedi, E. & Fadel, A. (2021). Effect of grape products on blood pressure: A systematic review and meta-analysis of randomized controlled trials. International Journal of Food Properties, 24(1), 627–645. https://doi.org/10.1080/10942912.2021.1901731
Buran, T. J., Sandhu, A. K., Li, Z., Rock, C. R., Yang, W. W. & Gu, L. (2014). Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. Journal of Food Engineering, 128, 167–173. http://dx.doi.org/10.1016/j.jfoodeng.2013.12.029
Burton-Freeman, B. M., Sandhu, A. K. & Edirisinghe, I. (2016). Red raspberries and their bioactive polyphenols: Cardiometabolic and neuronal health links. Advances in Nutrition, 7(1), 44–65. https://doi.org/10.3945/an.115.009639
Chai, Z., Herrera-Balandrano, D. D., Yu, H., Beta, T., Zeng, Q., Zhang, X., Tian, L., Niu, L. & Huang, W. (2021). A comparative analysis on the anthocyanin composition of 74 blueberry cultivars from China. Journal of Food Composition and Analysis, 102(4), 1–10. https://doi.org/10.1016/j.jfca.2021.104051
Chaves, V. C., Calvete, E. O. & Reginatto, F. H. (2017). Quality properties and antioxidant activity of seven strawberry (Fragaria x ananassa Duch.) cultivars. Scientia Horticulturae, 225(10), 293–298. http://dx.doi.org/10.1016/j.scienta.2017.07.013
Chen, L., Xin, X., Zhang, H. & Yuan, Q. (2013). Phytochemical properties and antioxidant capacities of commercial raspberry varieties. Journal of Functional Foods, 5(1), 508–515. https://doi.org/10.1016/j.jff.2012.10.009
Chiomento, J. L., De Nardi, F. S., Filippi, D., Trentin, T. S., Dornelles, A. G., Fornari, M., Nienow, A. A. & Calvete, E. O. (2021). Morpho-horticultural performance of strawberry cultivated on substrate with arbuscular mycorrhizal fungi and biochar. Scientia Horticulturae, 282, 1–10. https://doi.org/10.1016/j.scienta.2021.110053
Chiomento, J. L., De Nardi, F. S., Kujawa, S. C., Deggerone, Y. S., Fante, R., Kaspary, I. J., Dornelles, A. G., Huzar-Novakowiski, J. & Trentin, T. S. (2023). Multivariate contrasts of seven strawberry cultivars in soilless cultivation and greenhouse in southern Brazil. Advanced Chemicobiology Research, 2(1), 62–76. https://doi.org/10.37256/acbr.2120232332
Chiomento, J. L., Lima Júnior, E. P., D’Agostini, M., De Nardi, F. S., Trentin, T. S., Dornelles, A. G., Huzar-Novakowiski, J. & Calvete, E. O. (2021). Horticultural potential of nine strawberry cultivars by greenhouse production in Brazil: A view through multivariate analysis. Scientia Horticulturae, 279, 1–10. https://doi.org/10.1016/j.scienta.2020.109738
Chong, M. F., Macdonald, R. & Lovegrove, J. A. (2010). Fruit polyphenols and CVD risk: A review of human intervention studies. British Journal of Nutrition, 104(Suppl 3), 28–39. https://doi.org/10.1017/s0007114510003922
Clifford, M. N. & Scalbert, A. (2000). Ellagitannins: Nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1118–1125. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7%3C1118::AID-JSFA570%3E3.0.CO;2-9
Correa-Betanzo, J., Padmanabhan, P., Corredig, M., Subramanian, J. & Paliyath, G. (2015). Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity. Journal of Agricultural and Food Chemistry, 63(11), 2935–2946. https://doi.org/10.1021/acs.jafc.5b00016
Cvetković, M., Kočić, M., Dabić Zagorac, D., Ćirić, I., Natić, M., Hajder, Đ., Životić, A. & Fotirić Akšić, M. (2022). When is the right moment to pick blueberries? Variation in agronomic and chemical properties of blueberry (Vaccinium corymbosum) cultivars at different harvest times. Metabolites, 12(9), 1–19. https://doi.org/10.3390/metabo12090798
De Pascual-Teresa, S., Moreno, D. A. & Garcia-Viguera, C. (2010). Flavanols and anthocyanins in cardiovascular health: A review of current evidence. International Journal of Molecular Sciences, 11(4), 1679–1703. https://doi.org/10.3390%2Fijms11041679
Diaconeasa, Z., Florica, R., Rugină, D., Lucian, C. & Socaciu, C. (2014). HPLC/PDA–ESI/MS Identification of phenolic acids, flavonol glycosides and antioxidant potential in blueberry, blackberry, raspberries and cranberries. Journal of Food and Nutrition Research, 2(11), 781–785. https://doi.org/10.12691/jfnr-2-11-4
Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C. & Restani, P. (2021). Polyphenols and human health: The role of bioavailability. Nutrients, 13(1), 1–30. https://doi.org/10.3390%2Fnu13010273
Ding, Y., Zhang, B., Zhou, K., Chen, M., Wang, M., Jia, Y., Song, Y., Li, Y. & Wen, A. (2014). Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: Role of Nrf2 activation. International Journal of Cardiology, 175(3), 508–514. https://doi.org/10.1016/j.ijcard.2014.06.045
Draelos, Z., Dahl, A., Yatskayer, M., Chen, N., Krol, Y. & Oresajo, C. (2013). Dyspigmentation, skin physiology, and a novel approach to skin lightening. Journal of Cosmetic Dermatology, 12(4), 247–253. https://doi.org/10.1111/jocd.12066
Duarte, L. J., Chaves, V. C., Nascimento, M. V. P. S., Calvete, E. O., Li, M., Ciraolo, E., Ghigo, A., Hirsch, E., Simões, C. M. O., Reginatto, F. H. & Dalmarco, E. M. (2018). Molecular mechanism of action of pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chemistry, 247, 56–65. https://doi.org/10.1016/j.foodchem.2017.12.015
Etzbach, L., Pfeiffer, A., Weber, F. & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry, 245, 508–517. https://doi.org/10.1016/j.foodchem.2017.10.120
Felgus-Lavefve, L., Howard, L., Adams, S. H. & Baum, J. I. (2022). The effects of blueberry phytochemicals on cell models of inflammation and oxidative stress. Advances in Nutrition, 13(4), 1279–1309. https://doi.org/10.1093/advances/nmab137
Feng, R., Bowman, L. L., Lu, Y., Leonard, S. S., Shi, X., Jiang, B. H., Castranova, V., Vallyathan, V. & Ding, M. (2004). Blackberry extracts inhibit activating protein 1 activation and cell transformation by perturbing the mitogenic signaling pathway. Nutrition and Cancer, 50(1), 80–89. https://doi.org/10.1207/s15327914nc5001_11
Ferreira, D. S., Rosso, V. V. & Mercadante, A. Z. (2010). Bioactive compounds of blackberry fruits (Rubus spp.) grown in Brazil. Revista Brasileira de Fruticultura, 32(3), 664–674. https://doi.org/10.1590/S0100-29452010005000110
Folmer, F., Basavaraju, U. & Jaspars, M. (2014). Anticancer effects of bioactive berry compounds. Phytochemistry Reviews, 13, 295–322. https://doi.org/10.1007/s11101-013-9319-z
Forbes-Hernández, T. Y., Cianciosi, D., Ansary, J., Mezzetti, B., Bompadre, S., Quiles, J. L., Giampieri, F. & Battino, M. (2020). Strawberry (Fragaria × ananassa cv. Romina) methanolic extract promotes browning in 3T3-L1 cells. Food & Function, 11(1), 297–304. https://doi.org/10.1039/C9FO02285F
Gancel, A. L., Feneuil, A., Acosta, O., Pérez, A. M. & Vaillant, F. (2011). Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International, 44(7), 2243–2251. http://dx.doi.org/10.1016/j.foodres.2010.06.013
Garcia-Seco, D., Zhang, Y., Gutierrez-Mañero, F. J., Martin, C. & Ramos-Solano, B. (2015). Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One, 10(11), 1–23. https://doi.org/10.1371/journal.pone.0142639
Giampieri, F., Alvarez-Suarez, J. M., Mazzoni, L., Forbes-Hernandez, T. Y., Gasparrini, M., Gonzàlez-Paramàs, A. M. & Battino, M. (2014). An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food & Function, 5(8), 1939–1948. https://doi.org/10.1039/c4fo00048j
Giampieri, F., Forbes-Hernandez, T. Y., Gasparrini, M., Alvarez-Suarez, J. M., Afrin, S., Bompadre, S., Quiles, J. L., Mezzetti, B. & Battino, M. (2015). Strawberry as a health promoter: An evidence based review. Food & Function, 6(5), 1386–1398. https://doi.org/10.1039/c5fo00147a
Giusti, M. M. & Jing, P. (2007). Natural pigments of berries: functionality and application. In Y. Zhao, Berry Fruit. Value-Added Products for Health Promotion (pp. 105–146). CRC Press. https://doi.org/10.1201/9781420006148
Gowd, V., Bao, T., Wang, L., Huang, Y., Chen, S., Zheng, X., Cui, S. & Chen, W. (2018). Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chemistry, 269, 618–627. https://doi.org/10.1016/j.foodchem.2018.07.020
Howard, L. R., Brownmiller, C. & Prior, R. L. (2014). Improved color and anthocyanin retention in strawberry puree by oxygen exclusion. Journal of Berry Research, 4(2), 107–116. https://doi.org/10.3233/JBR-140072
Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52(39), 1–25. https://doi.org/10.1186/s40659-019-0246-3
Jamwal, K., Bhattacharya, S. & Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 26–38. https://doi.org/10.1016/j.jarmap.2017.12.003
Johnson, I. T. (2002). Glucosinolates in the human diet. Bioavailability and implications for health. Phytochemistry Reviews, 1, 183–188. https://doi.org/10.1023/A:1022507300374
Joshipura, K. J., Hu, F. B., Manson, J. E., Stampfer, M. J., Rimm, E. B., Speizer, F. E. & Willett, W. C. (2001). The effect of fruit and vegetable intake on risk for coronary heart disease. Annals of Internal Medicine, 134(12), 1106–1114. https://doi.org/10.7326/0003-4819-134-12-200106190-00010
Kähkönen, M., Kylli, P., Ollilainen, V., Salminen, J. P. & Heinonen, M. (2012). Antioxidant activity of isolated ellagitannins from red raspberries and cloudberries. Journal of Agricultural and Food Chemistry, 60(5), 1167–1174. https://doi.org/10.1021/jf203431g
Kalea, A. Z., Lamari, F. N., Theocharis, A. D., Cordopatis, P., Schuschke, D. A., Karamanos, N. K., Klimis-Zacas, D. J. (2006). Wild blueberry (Vaccinium angustifolium) consumption affects the composition and structure of glycosaminoglycans in Sprague-Dawley rat aorta. Journal of Nutritional Biochemistry, 17(2), 109–116. https://doi.org/10.1016/j.jnutbio.2005.05.015
Kalt, W., Cassidy, A., Howard, L. R., Krikorian, R., Stull, A. J., Tremblay, F. & Zamora-Ros, R. (2020). Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition, 11(2), 224–236. https://doi.org/10.1093/advances/nmz065
Kiselev, K. V., Aleynova, O. A., Grigorchuk, V. P. & Dubrovina, A. S. (2017). Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta, 245(1), 151–159. https://doi.org/10.1007/s00425-016-2598-z
Kist, B. B., Carvalho, C. & Beling, R. R. (2022). Anuário Brasileiro de Horti e Fruti. Editora Gazeta. https://www.editoragazeta.com.br/produto/anuario-brasileiro-de-horti-fruti-2022/
Knobloch, T. J., Uhrig, L. K., Pearl, D. K., Casto, B. C., Warner, B. M., Clinton, S. K., Sardo-Molmenti, C. L., Ferguson, J. M., Daly, B. T., Riedl, K., Schwartz, S. J., Vodovotz, Y., Buchta Sr, A. J., Schuller, D. E., Ozer, E., Agrawal, A. & Weghorst, C. M. (2016). Suppression of pro-inflammatory and pro-survival biomarkers in oral cancer patients consuming a black raspberry phytochemical-rich troche. Cancer Prevention Research, 9(2), 159–171. https://doi.org/10.1158/1940-6207.capr-15-0187
Kolniak-Ostek, J., Kucharska, A. Z., Sokół-Łętowska, A. & Fecka, I. (2015). Characterization of phenolic compounds of thorny and thornless blackberries. Journal of Agricultural and Food Chemistry, 63(11), 3012–3021. https://doi.org/10.1021/jf5039794
Kumar, A., Mosa, K. A., Ji, L., Kage, U., Dhokane, D., Karre, S., Madalageri, D. & Pathania, N. (2018). Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Critical Reviews in Food Science and Nutrition, 58(11), 1791–1807. https://doi.org/10.1080/10408398.2017.1285752
Lara, M. V., Bonghi, C., Famiani, F., Vizzotto, G., Walker, R. P. & Drincovich, M. F. (2020). Stone fruit as biofactories of phytochemicals with potential roles in human nutrition and health. Frontiers in Plant Science, 11, 1–21. https://doi.org/10.3389/fpls.2020.562252
Li, D., Zhang, Y., Liu, Y., Sun, R. & Xia, M. (2015). Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. Journal of Nutrition, 145(4), 742–748. https://doi.org/10.3945/jn.114.205674
Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition, 4(3), 384S–392S. https://doi.org/10.3945/an.112.003517
Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. The Journal of Nutrition, 134(12 Suppl), 3479S–3485S. https://doi.org/10.1093/jn/134.12.3479s
Liu, Y., Liu, M., Li, B., Zhao, J.-L., Zhang, C.-P., Lin, L.-Q., Chen, H.-S., Zhang, J.-S., Jin, J.-C., Wang, L., Li, L.-J. & Liu, J.-R. (2010). Fresh raspberry phytochemical extract inhibits hepatic lesion in a Wistar rat model. Nutrition & Metabolism, 7(84), 1–8. https://doi.org/10.1186/1743-7075-7-84
Maksimović, J. J. D., Milivojević, J. M., Poledica, M. M., Nikolić, M. D. & Maksimović, V. M. (2013). Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss Polka). Journal of Food Composition and Analysis, 31(2), 173–179. http://dx.doi.org/10.1016/j.jfca.2013.05.008
Matarese, F., Cuzzola, A., Scalabrelli, G. & D’Onofrio, C. (2014). Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera. Phytochemistry, 105, 12–24. https://doi.org/10.1016/j.phytochem.2014.06.007
Mazova, N., Popova, V. & Stoyanova, A. (2020). Phytochemical composition and biological activity of Physalis spp.: A mini-review. Food Science and Applied Biotechnology, 3(1), 56–70. http://dx.doi.org/10.30721/fsab2020.v3.i1.80
Monjotin, N., Amiot, M. J., Fleurentin, J., Morel, J. M. & Raynal, S. (2022). Clinical evidence of the benefits of phytonutrients in human healthcare. Nutrients, 14, 1–54. https://doi.org/10.3390%2Fnu14091712
Muñoz, P., Parra, F., Simirgiotis, M. J., Sepúlveda-Chavera, G. F. & Parra, C. (2021). Chemical characterization, nutritional and bioactive properties of Physalis peruviana fruit from high areas of the Atacama Desert. Foods, 10(11), 1–13. https://doi.org/10.3390/foods10112699
Olivares-Tenorio, M. L., Verkerk, R., Van Boekel, M. A. J. S. & Dekker, M. (2017). Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.). Journal of Functional Foods, 32, 46–57. https://doi.org/10.1016/j.jff.2017.02.021
Pant, P., Pandey, S. & Dall’Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry & Biodiversity, 18(11), 1–14. https://doi.org/10.1002/cbdv.202100345
Ramakrishna, A. & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. https://doi.org/10.4161%2Fpsb.6.11.17613
Rao, A. V. & Snyder, D. M. (2010). Raspberries and human health: A review. Journal of Agricultural and Food Chemistry, 58(7), 3871–3883. https://doi.org/10.1021/jf903484g
Reis, J. F., Monteiro, V. V. S., Souza Gomes, R., Carmo, M. M., Costa, G. V., Ribera, P. C. & Monteiro, M. C. (2016). Action mechanism and cardiovascular effect of anthocyanins: A systematic review of animal and human studies. Journal of Translational Medicine, 14(1), 1–16. https://doi.org/10.1186/s12967-016-1076-5
Renaud, S. & De Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 339(8808), 1523–1526. https://doi.org/10.1016/0140-6736(92)91277-f
Rienth, M., Vigneron, N., Darriet, P., Sweetman, C., Burbidge, C., Bonghi, C., Walker, R. P., Famiani, F. & Castellarin, S. D. (2021). Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario: A review. Frontiers in Plant Science, 12, 1–26. https://doi.org/10.3389/fpls.2021.643258
Roth, S., Spalinger, M. R., Gottier, C., Biedermann, L., Zeitz, J., Lang, S., Weber, A., Rogler, G. & Scharl, M. (2016). Bilberry-derived anthocyanins modulate cytokine expression in the intestine of patients with ulcerative colitis. PLoS One, 11(5), 1–17. https://doi.org/10.1371/journal.pone.0154817
Sabra, A., Netticadan, T. & Wijekoon, C. (2021). Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chemistry, 12, 1–13. https://doi.org/10.1016/j.fochx.2021.100149
Sangiovanni, E., Vrhovsek, U., Rossoni, G., Colombo, E., Brunelli, C., Brembati, L., Trivulzio, S., Gasperotti, M., Mattivi, F., Bosisio, E. & Dell’Agli, M. (2013). Ellagitannins from Rubus berries for the control of gastric inflammation: in vitro and in vivo studies. PLoS One, 8(8), 1–12. https://doi.org/10.1371/journal.pone.0071762
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T. & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706. https://doi.org/10.3390/ijms161024673
Song, J., Li, Y., Ge, J., Duan, Y., Sze, S. C. W., Tong, Y., Shaw, P. C., Ng, T. B., Tsui, K. C., Zhuo, Y. & Zhang, K. Y. (2010). Protective effect of bilberry (Vaccinium myrtillus L.) extracts on cultured human corneal limbal epithelial cells (HCLEC). Phytotherapy Research, 24(4), 520–524. https://doi.org/10.1002/ptr.2974
Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A. & Andreotti, C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9(9), 1–22. https://doi.org/10.3390/agronomy9090483
Torre, L. C. & Barritt, B. H. (1977). Quantitative evaluation of Rubus fruit anthocyanin pigments. Journal of Food Science, 42(2), 488–490. https://doi.org/10.1111/j.1365-2621.1977.tb01528.x
Torres-Urrutia, C., Guzman, L., Schmeda-Hirschmann, G., Moore-Carrasco, R., Alarcon, M., Astudillo, L., Gutierrez, M., Carrasco, G., Yuri, J. A., Aranda, E. & Palomo, I. (2011). Antiplatelet, anticoagulant, and fibrinolytic activity in vitro of extracts from selected fruits and vegetables. Blood Coagulation & Fibrinolysis, 22(3), 197–205. https://doi.org/10.1097/mbc.0b013e328343f7da
Tuteja, N. & Mahajan, S. (2007). Calcium signaling network in plants: An overview. Plant Signaling & Behavior, 2(2), 79–85. https://doi.org/10.4161%2Fpsb.2.2.4176
Van Breda, S. G. J., Briedé, J. J. & De Kok, T. (2018). Improved preventive effects of combined bioactive compounds present in different blueberry varieties as compared to single phytochemicals. Nutrients, 11(1), 1–14. https://doi.org/10.3390/nu11010061
Wang, S., Wang, B., Dong, K., Li, J., Li, Y. & Sun, H. (2022). Identification and quantification of anthocyanins of 62 blueberry cultivars via UPLC-MS. Biotechnology & Biotechnological Equipment, 36(1), 587–597. https://doi.org/10.1080/13102818.2022.2090857
Yamika, W. S. D., Aini, N. & Waluyo, B. (2019). Physalis peruviana L.: Growth, yield and phytochemical content - A review. Agricultural Reviews, 4(4), 147–152. http://dx.doi.org/10.18805/ag.R-130
Yoshimura, M., Watanabe, Y., Kasai, K., Yamakoshi, J. & Koga, T. (2005). Inhibitory effect of an ellagic acid-rich pomegranate extract on tyrosinase activity and ultraviolet-induced pigmentation. Bioscience, Biotechnology and Biochemistry, 69(12), 2368–2373. https://doi.org/10.1271/bbb.69.2368
Yousefi, R., Parandoosh, M., Khorsandi, H., Hosseinzadeh, N., Tonekaboni, M. M., Saidpour, A., Babaei, H. & Ghorbani, A. (2021). Grape seed extract supplementation along with a restricted-Calorie diet improves cardiovascular risk factors in obese or overweight adult individuals: A randomized, placebo-Controlled trial. Phytotherapy Research, 35(2), 987–995. https://doi.org/10.1002/ptr.6859
Zhang, L., Wang, Z. & Zhang, W. (2013). Determination of caftaric acid, p-coutaric acid and fertaric acid in grape juice, peel and seeds by ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry. Chinese Journal of Chromatography, 31(2), 122–126. https://doi.org/10.3724/sp.j.1123.2012.09047
Zhang, Y.-J., Deng, G., Ru, X., Wu, S., Li, S. & Li, H. (2013). Chemical components and bioactivities of Cape gooseberry (Physalis peruviana). International Journal of Food Nutrition and Safety, 3(1), 15–24. https://modernscientificpress.com/journals/ViewArticle.aspx?6ZIT7oAL6Lqarm6Ljqm1AEElk+hj9A+fv9GWpU/xhwwRe+2q2RWNomBD9aIj2kYX

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Link: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es