Uso de bioestimulantes en el manejo sustentable de cultivos frutales: una revisión narrativa

Autores/as

  • Guilherme Barreto University of Passo Fundo
  • Claudia Petry University of Passo Fundo
  • Diógenes Silveira Federal University of Rio Grande do Sul
  • Thomas Trentin University of São Paulo
  • Ana Paula Turmina Sumitono Chemical Ltda.
  • José Luís Trevizan Chiomento University of Passo Fundo

Palabras clave:

Agroecosistemas, fruticultura, huertos, sostenibilidad, bioinsumos

Resumen

Introducción: A escala mundial, los obstáculos para la fruticultura corresponden a la falta de mano de obra calificada, la limitada cantidad de tierra cultivable disponible y los altos costos de adquisición de fertilizantes y pesticidas. Estos inconvenientes, ligados a impactos ambientales y daños ecotoxicológicos, indican que científicos, industrias y fruticultores han mostrado interés en el desarrollo de bioherramientas para el manejo de plantas frutales con el objetivo de la producción óptima de los huertos, como los bioestimulantes. Este bioinsumo estimula los procesos de nutrición de las plantas independientemente del contenido de nutrientes del producto, con el objetivo de mejorar la eficiencia en el uso de los nutrientes, la tolerancia al estrés abiótico y las características de calidad y disponibilidad de los nutrientes disponibles en el medio de cultivo. Objetivo­: Así, esta revisión narrativa tiene como objetivo analizar el estado del arte en cuanto al uso de bioestimulantes en la fruticultura, recopilar información sobre la correcta aplicación de estos bioinsumos y presentar alternativas a la difusión de bioestimulantes en agroecosistemas frutícolas. La totalidad de los mecanismos de acción de los bioestimulantes aún debe comprenderse mejor. Resultados: La aplicabilidad de bioestimulantes en el manejo de cultivos frutales demostró ser una posibilidad relevante para otorgar sostenibilidad a los sistemas productivos en fruticultura y reducir costos, aumentando la productividad, la vida útil y reduciendo los daños causados por las adversidades climáticas en los cultivos, principalmente el estrés hídrico. Conclusiones: El desarrollo de una legislación específica para bioestimulantes debe contribuir sustancialmente a generar credibilidad con los agricultores para diferenciar, por ejemplo, fertilizantes foliares y agentes microbianos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Araujo, L., Pinto, F. A., Vieira, J., Pasa, M., Valdebenito-Sanhueza, R. M. y Stadnik, M. (2020). Uso de bioestimulantes para o manejo da sarna da macieira em pomares. Agropecuária Catarinense, 33(3), 60–66. https://doi.org/10.52945/rac.v33i3.751

Basile, B., Rouphael, Y., Colla, G., Soppelsa, S. & Andreotti, C. (2020). Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Scientia Horticulturae, 267, 1–10. https://doi.org/10.1016/j.scienta.2020.109330

Bitterlich, M., Rouphael, Y., Graefe, J. & Franken, P. (2018). Arbuscular mycorrhizas: A promising component of plant production systems provided favorable conditions for their growth. Frontiers in Plant Science, 9, 1–6. https://doi.org/10.3389/fpls.2018.01329

Bulgari, R., Franzoni, G. & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9, 1–30. https://doi.org/10.3390/agronomy9060306

Calvo, P., Nelson, L. & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1), 3–41. https://doi.org/10.1007/s11104-014-2131-8

Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P. & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27. https://doi.org/10.1016/j.scienta.2015.09.013

Cao, M.-A., Wang, P., Hashem, A., Wirth, S., Abd_Allah, E. F. & Wu, Q.-S. (2021). Field inoculation of arbuscular mycorrhizal fungi improves fruit quality and root physiological activity of citrus. Agriculture, 11(12), 1–9. https://doi.org/10.3390/agriculture11121297

Caporal, F. R. (2020). Transição agroecológica e o papel da extensão rural. Extensão Rural, 27(3), 7–19. https://doi.org/10.5902/2318179638420

Castiglione, A. M., Mannino, G., Contartese, V., Bertea, C. M. & Ertani, A. (2021). Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants, 10(8), 1–25. https://doi.org/10.3390/plants10081533

Cavalcante, I. H. L., Da Silva, R. R. S., Albano, F. G., De Lima, F. N. & Marques, A. (2011). Foliar spray of humic substances on seedling production of papaya (pawpaw). Journal of Agronomy, 10(4), 118–122. https://doi.org/10.3923/ja.2011.118.122

Cavalcante, W., Da Silva, N., Teixeira, M., Filho, F., Nascimento, P. E. & Corrêa, F. (2020). Eficiência dos bioestimulantes no manejo do déficit hídrico na cultura da soja. Irriga, 25(4), 754–763. https://doi.org/10.15809/irriga.2020v25n4p754-763

Chen, K., Kleijn, D., Scheper, J. & Fijen, T. P. M. (2022). Additive and synergistic effects of arbuscular mycorrhizal fungi, insect pollination and nutrient availability in a perennial fruit crop. Agriculture, Ecosystems & Environment, 325, 1–8. https://doi.org/10.1016/j.agee.2021.107742

Chiomento, J. L., Filippi, D., Krasnievicz, G. M., De Paula, J. E., Fornari, M. & Trentin, T. (2022). Arbuscular mycorrhizal fungi potentiate the root system and the quality of goldenberry fruits. Advances in Horticultural Science, 36(4), 265–273. https://doi.org/10.36253/ahsc-13352

Chiomento, J. L., De Nardi, F., Filippi, D., Trentin, T., Dornelles, A., Fornari, M., Nienow, A. A. & Calvete, E. (2021). Morpho-horticultural performance of strawberry cultivated on substrate with arbuscular mycorrhizal fungi and biochar. Scientia Horticulturae, 282, 1–13. https://doi.org/10.1016/j.scienta.2021.110053

Colla, G., Cardarelli, M., Bonini, P. & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience, 52, 1214–1220. https://doi.org/10.21273/HORTSCI12200-17

Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R. & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037

Colla, G. & Rouphael, Y. (2015). Biostimulants in horticulture. Scientia Horticulturae, 196, 1–2. http://dx.doi.org/10.1016/j.scienta.2015.10.044

Concheri, G., Nardi, S., Reniero, F. & Dell’Agnola, G. (1996). Structural characteristics and biological activities of humic substances within the Ah horizon (Calcic-Luvisol). Plant and Soil, 179, 65–72. https://www.springer.com/journal/11104

Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23, 371–393. https://doi.org/10.1007/s10811-010-9560-4

De Pascale, S., Rouphael, Y. & Colla, G. (2017). Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science, 82(6), 277–285. http://dx.doi.org/10.17660/eJHS.2017/82.6.2

Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196(1), 3–14. https://doi.org/10.1016/j.scienta.2015.09.021

Ertani, A., Schiavon, M. & Nardi, S. (2017). Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicum L. in response to an alfalfa-protein hydrolysate using microarrays. Frontiers in Plant Science, 8, 1–19. https://doi.org/10.3389/fpls.2017.01159

Ertani, A., Francioso, O., Tinti, A., Schiavon, M., Pizzeghello, D. & Nardi, S. (2018). Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Frontiers in Plant Science, 9(1), 1–13. https://doi.org/10.3389/fpls.2018.00428

Ertani, A., Pizzeghello, D., Francioso, O., Sambo, P., Sanchez-Cortes, S. & Nardi, S. (2014). Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Frontiers in Plant Science, 5, 1–12. https://doi.org/10.3389/fpls.2014.00375

Erturk, Y., Ercisli, S., Haznedar, A. & Cakmakci, R. (2010). Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biological Research, 43(1), 91–98. http://dx.doi.org/10.4067/S0716-97602010000100011

EU. European Parliament and of The Council. (2019). Regulation (EU) 2019/1009, laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Official Journal of the European Union, L 170/1, of 5 June 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R1009

Fadiji, A. E., Babalola, O. O., Santoyo, G. & Perazzolli, M. (2022). The potential role of microbial biostimulants in the amelioration of climate change-associated abiotic stresses on crops. Frontiers in Microbiology, 12, 1–17. https://doi.org/10.3389/fmicb.2021.829099

Fenili, C. L., Petri, J., Steffens, C. A., De Martin, M., Do Amarante, C. V. & Heinzen, A. (2019). Alternatives to increase the red color of the peel in ‘Daiane’ and ‘Venice’ apples. Revista Brasileira de Fruticultura, 41(2), 1–11. https://doi.org/10.1590/0100-29452019128

Ferreira, G., Costa, P. N., Ferrari, T., Rodrigues, J., Braga, J. & Jesus, F. (2007). Emergência e desenvolvimento de plântulas de maracujazeiro azedo oriundas de sementes tratadas com bioestimulante. Revista Brasileira de Fruticultura, 29(3), 595–599. https://doi.org/10.1590/S0100-29452007000300034

Garcia-Seco, D., Zhang, Y., Gutierrez-Mañero, F. J., Martin, C. & Ramos-Solano, B. (2015). Application of Pseudomonas fluorescens to Blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One, 10(11), 1–23. https://doi.org/10.1371/journal.pone.0142639

Gomes, F. A., Santos, A., Da Silva, G., Da Silva, M., Correa, M. A., Gomes, Y. B., Batista, M. & Araújo, R. H. C. (2019). Potencial do uso de nanopartículas de microalgas na produção de romãzeira. Meio Ambiente, 1(2), 31–40. https://meioambientebrasil.com.br/index.php/MABRA/article/view/32

Gonçalves, B. H., Souza, J. M., Ferraz, R. A., Tecchio, M. A. & Leonel S. (2018). Efeito do bioestimulante Stimulate® no desenvolvimento de mudas de maracujazeiro cv. BRS Rubi do Cerrado. Revista de Ciências Agrárias, 41(1), 147–155. https://revistas.rcaap.pt/rca/article/download/16634/13550/54564

Guedes, W., Araújo, R. H. C., Rocha, J. L., De Lima, J. F., Dias, G., De Oliveira, Á. M., De Lima, R. F. & Oliveira, L. (2018). Production of papaya seedlings using Spirulina platensis as a biostimulant applied on leaf and root. Journal of Experimental Agriculture International, 28(1), 1–9. http://dx.doi.org/10.9734/JEAI/2018/45053

Gurav, R. G. & Jadhav, J. P. (2013). A novel source of biofertilizer from feather biomass for banana cultivation. Environmental Science and Pollution Research, 20(7), 4532–4539. https://doi.org/10.1007/s11356-012-1405-z

He, X., Zhang, H., Li, J., Yang, F., Dai, W., Xiang, C. & Zhang, M. (2022). The positive effects of humic/fulvic acid fertilizers on the quality of lemon fruits. Agronomy, 12, 1–9. https://doi.org/10.3390/agronomy12081919

Ismail, S. A. A. & Ganzour, S. K. (2021). Efficiency of foliar spraying with moringa leaves extract and potassium nitrate on yield and quality of strawberry in sandy soil. International Journal of Agricultural and Statistical Sciences, 17(1), 383–398. https://connectjournals.com/03899.2021.17.383

Jindo, K., Olivares, F., Malcher, D. J., Sánchez-Monedero, M. A., Kempenaar, C. & Canellas, L. P. (2020). From lab to field: Role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Frontiers in Plant Science, 11, 1–10. https://doi.org/10.3389/fpls.2020.00426

Jindo, K., Martim, S. A., Navarro, E., Pérez-Alfocea, F., Hernandez, T., Garcia, C., Aguiar, N. & Canellas, L. P. (2012). Root growth promoting by humic acids from composted and non-composted urban organic wastes. Plant and Soil, 353, 209–220. https://doi.org/10.1007/s11104-011-1024-3

Kisvarga, S., Farkas, D., Boronkay, G., Neményi, A. & Orlóci, L. (2022). Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy, 12(5), 1–25. https://doi.org/10.3390/agronomy12051043

Kocira, A., Świeca, M., Kocira, S., Złotek, U. & Jakubczyk, A. (2018). Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi Journal of Biological Sciences, 25(3), 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039

Koo, R. (1988). Response of citrus to seaweed-based nutrient sprays. Proceedings of the Florida State Horticultural Society, 101, 26–28. https://fshs.memberclicks.net/

Kumar, H. D. & Aloke, P. (2020). Role of biostimulant formulations in crop production: An overview. International Journal of Applied Research in Veterinary Medicine, 8(2), 38–46. https://http://www.jarvm.com/

Kunicki, E., Grabowska, A., Sękara, A. & Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L). Folia Horticulturae, 22(2), 9–13. http://dx.doi.org/10.2478/fhort-2013-0153

Lehmann, J. & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60–68. https://doi.org/10.1038/nature16069

Lisiecka, J., Knaflewski, M., Spizewski, T., Fraszczak, B., Kaluzewicz, A. & Krzesinski, W. (2011). The effect of animal protein hydrolysate on quantity and quality of strawberry daughter plants cv. ‘Elsanta’. Acta Scientiarum Polonorum Hortorum Cultus, 10(1), 31–40. https://czasopisma.up.lublin.pl/index.php/asphc/article/view/3173

Lombardi, N., Caira, S., Troise, A., Scaloni, A., Vitaglione, P., Vinale, F., Marra, R., Salzano, A. M., Lorito, M. & Woo, S. L. (2020). Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and quality. Frontiers in Microbiology, 11, 1–17. https://doi.org/10.3389/fmicb.2020.01364

Mancuso, S., Azzarello, E., Mugnai, S. & Briand, X. (2006). Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Advances in Horticultural Science, 20(2), 156–161. https://www.jstor.org/stable/42882475

Mishra, A. N. & Tripathi, V. K. (2011). Influence of different levels of Azotobacter, PSB alone and in combination on vegetative growth, flowering, yield and quality of strawberry cv. Chandler. International Journal of Applied Agricultural Research, 6(3), 203–210. http://www.ripublication.com/IJAER/ijaarv6n3_01.pdf

Morales-Payan, J. P. & Stall, W. M. (2003). Papaya (Carica papaya) response to foliar treatments with organic complexes of peptides and amino acids. Proceedings of the Florida State Horticultural Society, 116, 30–32. https://journals.flvc.org/fshs/article/download/86499/83415/0

Nardi, S., Pizzeghello, D., Schiavon, M. & Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based. Scientia Agricola, 73(1), 18–23. https://doi.org/10.1590/0103-9016-2015-0006

Nargesi, M. M., Sedaghathoor, S. & Hashemabadi, D. (2022). Effect of foliar application of amino acid, humic acid and fulvic acid on the oil content and quality of olive. Saudi Journal of Biological Sciences, 29(5), 3473–3481. https://doi.org/10.1016/j.sjbs.2022.02.034

Nebbioso, A., Vinci, G., Drosos, M., Spaccini, R. & Piccolo, A. (2015). Unveiling themolecular composition of the unextractable soil organic fraction (humin) byhumeomics. Biology and Fertility of Soils, 51(4), 443–451. http://dx.doi.org/10.1007/s00374-014-0991-y

Nikolaou, N., Angelopoulos, K. & Karagiannidis, N. (2003). Effects of drought stress on mycorrhizal and non-mycorrhizal Cabernet Sauvignon grapevine, grafted onto various rootstocks. Experimental Agriculture, 39(3), 241–252. https://doi.org/10.1017/S001447970300125X

Olk, D. C., Bloom, P. R., Perdue, E. M., Mcknight, D. M., Chen, Y., Farenhorst, A., Senesi, N., Chin, Y. P., Schmitt-Kopplin, P., Hertkorn, N. & Harir, M. (2019). Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. Journal of Environmental Quality, 48(2), 217–232. https://doi.org/10.2134/jeq2019.02.0041

Pessenti, I. L., Ayub, R. A., Filho, J. L., Clasen, F., Rombaldi, C. & Botelho, R. (2022). Influence of abscisic acid, Ascophyllum nodosum and Aloe vera on the phenolic composition and color of grape berry and wine of ‘Cabernet Sauvignon’ variety. Ciência e Técnica Vitivinícola, 37(1), 1–12. https://doi.org/10.1051/ctv/ctv202237011

Piccolo, A. (2002). The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, 75, 57–134. http://dx.doi.org/10.1016/S0065-2113(02)75003-7

Pizzeghello, D., Nicolini, G. & Nardi, S. (2002). Hormone-like activities of humic substances in different forest ecosystems. New Phytologist, 155(3), 393–402. https://doi.org/10.1046/j.1469-8137.2002.00475.x

Pizzeghello, D., Nicolini, G. & Nardi, S. (2001). Hormone-like activity of humic substances in Fagus sylvaticae L. forests. New Phytologist, 151(3), 647–657. https://doi.org/10.1046/j.0028-646x.2001.00223.x

Pizzeghello, D., Francioso, O., Ertani, A., Muscolo, A. & Nardi, S. (2013). Isopentenyladenosine and cytokinin-like activity of four humic substances. Journal of Geochemical Exploration, 129, 70–75. http://dx.doi.org/10.1016/j.gexplo.2012.10.007

Popa, D. G., Lupu, C., Constantinescu-Aruxandei, D. & Oancea, F. (2022). Humic substances as microalgal biostimulants – Implications for microalgal biotechnology. Marine Drugs, 20, 1–27. https://doi.org/10.3390%2Fmd20050327

Popescu, G. C. & Popescu, M. (2018). Yield, berry quality and physiological response of grapevine to foliar humic acid application. Crop Production and Management, 77(2), 273–282. http://dx.doi.org/10.1590/1678-4499.2017030

Prasad, K., Singh, G., Singh, S. K., Pradhan, J., Kumar, U. & Singh, H. (2022). Plant extract and essential oil coating prolongs shelf life and maintains keeping quality of papaya fruit during storage. Journal of Food Processing and Preservation, 46(11), 1–15. https://doi.org/10.1111/jfpp.17015

Przybyłko, S., Kowalczyk, W. & Wrona, D. (2021). The effect of mycorrhizal fungi and PGPR on tree nutritional status and growth in organic apple production. Agronomy, 11, 1–15. https://doi.org/10.3390/agronomy11071402

Qin, L., Kang, W. H., Qi, Y. L., Zhang, Z. W. & Wang, N. (2016). The influence of silicone application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.). Acta Physiologiae Plantarum, 38(3), 1–9. http://dx.doi.org/10.1007/s11738-016-2087-9

RFB. MAPA. (2009). Instrução normativa n. 25. Normas sobre as especificações e as garantias, as tolerâncias, o registro, a embalagem e a rotulagem dos fertilizantes orgânicos simples, mistos, compostos, organominerais e biofertilizantes destinados à agricultura. Diário Oficial da União, n. 173, Seção 1, de 23 de julho de 2009. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-25-de-23-7-2009-fertilizantes-organicos.pdf/view

RFB. MAPA. (2008). Instrução normativa n. 64, Aprova o regulamento técnico para os sistemas orgânicos de produção animal e vegetal. Diário Oficial da União, n. 247, Seção 1, de 18 de dezembro de 2008. https://sistemasweb.agricultura.gov.br/conjurnormas/index.php/INSTRU%C3%87%C3%83O_NORMATIVA_N%C2%BA_64,_DE_18_DE_DEZEMBRO_DE_2008

RFB. Presidência da República. (2004). Decreto n. 4.954, Aprova o Regulamento da Lei nº 6.894, de 16 de dezembro de 1980, que dispõe sobre a inspeção e fiscalização da produção e do comércio de fertilizantes, corretivos, inoculantes ou biofertilizantes destinados à agricultura, e dá outras providências. Diário Oficial da União, Seção 1 - 15/1/2004, Página 2 (Publicação Original). https://www2.camara.leg.br/legin/fed/decret/2004/decreto-4954-14-janeiro-2004-497758-normaatualizada-pe.html

Rodrigues, M., Baptistella, J. L., Horz, D. C., Bortolato, L. & Mazzafera, P. (2020). Organic plant biostimulants and fruit quality - A review. Agronomy, 10, 1–16. https://doi.org/­10.3390/agronomy10070988

Rouphael, Y. & Colla, G. (2020). Editorial. Plant biostimulants: Rationale, state of the art and evolution. Frontiers in Plant Science, 11(40), 1–7. http://dx.doi.org/10.3389/fpls.2020.00040

Rouphael, Y. & Colla, G. (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1–7. https://doi.org/10.3389/fpls.2018.01655

Rouphael, Y., Kyriacou, M. C., Petropoulos, S. A., De Pascale, S. & Colla, G. (2018). Improving vegetable quality in controlled environments. Scientia Horticulturae, 234, 275–289. https://doi.org/10.1016/j.scienta.2018.02.033

Rouphael, Y., Colla, G., Graziani, G., Ritieni, A., Cardarelli, M. & De Pascale, S. (2017). Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chemistry, 234, 10–19. https://doi.org/10.1016/j.foodchem.2017.04.175

Sabir, A. (2013). Improvement of grafting efficiency in hard grafting grape Berlandieri hybrid rootstocks by plant growth-promoting rhizobacteria (PGPR). Scientia Horticulturae, 164, 24–29. https://doi.org/10.1016/j.scienta.2013.08.035

Schaafsma, G. (2009). Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. European Journal of Clinical Nutrition, 63(10), 1161–1168. https://doi.org/10.1038/ejcn.2009.56

Schoebitz, M., López, M. D., Serrí, H., Martínez, O. & Zagal, E. (2016). Combined application of microbial consortium and humic substances to improve the growth performance of blueberry seedlings. Journal of Soil Science and Plant Nutrition, 16(4), 1010–1023. http://dx.doi.org/10.4067/S0718-95162016005000074

Şesan, T. E., Oancea, A. O., Ştefan, L. M., Mănoiu, V. S., Ghiurea, M., Răut, I., Constantinescu-Aruxandei, D., Toma, A., Savin, S., Bira, A. F., Pomohaci, C. M. & Oancea, F. (2020). Effects of foliar treatment with a Trichoderma plant biostimulant consortium on Passiflora caerulea L. yield and quality. Microorganisms, 8, 1–27. https://doi.org/10.3390/microorganisms8010123

Sestili, F., Rouphael, Y., Cardarelli, M., Pucci, A., Bonini, P., Canaguier, R. & Colla, G. (2018). Protein hydrolysate stimulates growth and N uptake in tomato coupled with N-dependent gene expression involved in N assimilation. Frontiers in Plant Science, 9, 1–11. https://doi.org/10.3389/fpls.2018.01233

Soppelsa, S., Kelderer, M., Testolin, R., Zanotelli, D. & Andreotti, C. (2020). Effect of biostimulants on apple quality at harvest and after storage. Agronomy, 10, 1–18. https://doi.org/10.3390/agronomy10081214

Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P. & Andreotti, C. (2018). Use of biostimulants for organic apple production: Effects on tree growth, yield, and fruit quality at harvest and during storage. Frontiers in Plant Science, 9, 1–17. https://doi.org/10.3389/fpls.2018.01342

Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A. & Andreotti, C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9, 1–22. https://doi.org/10.3390/agronomy9090483

Spann, T. & Little, H. (2011). Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container. HortScience, 46(4), 577–582. https://doi.org/10.21273/HORTSCI.46.4.577

Vendruscolo, E. P., Bortolheiro, F. P. A. P., Martins, M. B., Campos, L. F. C., Seleguini, A. & De Lima, S. F. (2020). Do planting methods and nitrogen management interfere with the economic viability of the melon crop? Comunicata Scientiae, 11, 1–17. https://doi.org/10.14295/cs.v11i0.3127

Viera, W., Noboa, M., Martínez, A., Báez, F., Jácome, R., Medina, L. & Jackson, T. (2019). Trichoderma asperellum increases crop yield and fruit weight of blackberry (Rubus glaucus) under subtropical Andean conditions. Vegetos, 32(2), 209–215. https://doi.org/10.1007/s42535-019-00024-5

Wang, H., Zhang, R., Mao, Y., Jiang, W., Chen, X., Shen, X., Yin, C. & Mao, Z. (2022). Effects of Trichoderma asperellum 6S-2 on apple tree growth and replanted soil microbial environment. Journal of Fungi, 8(1), 1–18. https://doi.org/10.3390/jof8010063

Wally, O. S. D., Critchley, A. T., Hiltz, D., Craigie, J. S., Han, X., Zaharia, L. I., Abrams, S. R. & Prithiviraj, B. (2013). Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32(2), 324–339. http://dx.doi.org/10.1007/s00344-012-9301-9

Woo, S. L. & Pepe, O. (2018). Microbial consortia: Promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1–6. https://doi.org/10.3389/fpls.2018.01801

Wu, H.-H., Zou, Y.-N., Rahman, M. M., Ni, Q.-D. & Wu, Q.-S. (2017). Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scientific Reports, 7, 1–10. https://doi.org/10.1038/srep42389

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A. & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 1–32. https://doi.org/10.3389/fpls.2016.02049

Yu, X., Liu, X., Zhu, T. H., Liu, G. H. & Mao, C. (2012). Co-inoculation with phosphate-solubilizing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. European Journal of Soil Biology, 50, 112–117. http://dx.doi.org/10.1016/j.ejsobi.2012.01.004

Yu, Y. Y., Xu, J. D., Huang, T. X., Zhong, J., Yu, H., Qiu, J. P. & Guo, J. H. (2020). Combination of beneficial bacteria improves blueberry production and soil quality. Food Science & Nutrition, 8(11), 5776–5784. https://doi.org/10.1002%2Ffsn3.1772

Zhang, F., He, J.-D., Ni, Q. D., Wu, Q. S. & Zou, Y. N. (2018). Enhancement of drought tolerance in trifoliate orange by mycorrhiza: Changes in root sucrose and proline metabolisms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 270–276. https://doi.org/10.15835/nbha46110983

Zhang, X. & Schmidt, R. E. (1997). The impact of growth regulators on alpha-tocopherol status of water-stressed Poa pratensis L. International Turfgrass Society Research Journal, 8(2), 1364–1373. https://onlinelibrary.wiley.com/journal/25731513

Zulfiqar, F., Casadesús, A., Brockman, H. & Munné-Bosch, S. (2020). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science, 295, 1–10. https://doi.org/10.1016/j.plantsci.2019.110194

Publicado

2023-05-14

Cómo citar

Barreto, G., Petry, C., Silveira, D., Trentin, T., Turmina, A. P., & Chiomento, J. L. T. (2023). Uso de bioestimulantes en el manejo sustentable de cultivos frutales: una revisión narrativa . LADEe Latin American Developments in Energy Engineering, 4(1), 29–48. Recuperado a partir de https://ojstest.certika.co/IDEE/article/view/5013

Número

Sección

Artículos

Artículos más leídos del mismo autor/a