Crushed amygdaloidal basalt rock and its effects on tomato production

Authors

  • Adilson Celimar Dalmora Universidade Federal do Rio Grande do Sul (UFRGS)
  • Rubens Müller Kautzmann Agência Nacional de Mineração (ANM-RS)
  • Jair Staub Universidade Federal do Rio Grande do Sul (UFRGS)
  • Ivo André Homrich Schneider Universidade Federal do Rio Grande do Sul (UFRGS)

DOI:

https://doi.org/10.17981/ladee.03.02.2022.1

Keywords:

Agricultural productivity, Solanum lycopersicum L., sustainable agriculture, rock dust

Abstract

Introduction: Sustainable agriculture plays an important role in agricultural productivity, in which it seeks to reduce dependence on conventional synthetic fertilizers (imported from Europe) and promote the use of alternative, low-cost and environmentally friendly sources. Objetive: An experiment was carried out in the municipality of Santa Maria, Rio Grande do Sul, Brazil, with the objective of evaluating the efficiency and agronomic viability of using a mineral product (amygdaloid basalt powder) as an agricultural input on tomato productivity Solanum lycopersicum L. Methodology: The experimental design used was randomized blocks with six treatments and four replications, at doses 0 (treatment 1 - control), 1.0-t ha–1 of rock dust (treatment 2), 2.5-t ha–1 of rock dust (treatment 3), 3.5-t ha–1 of rock dust (treatment 4), 4.5-t ha–1 of rock dust (treatment 5), and recommended fertilization for tomato 5-20-20 NPK (treatment 6 - standard). Results: The treatments were applied in December 2018 and the transplant took place in February 2019. According to the conditions under which the experiment was submitted and analyzing the results obtained, it can be inferred that the application of 1.0-t ha–1 of amygdaloidal basalt in the soil increased parameters such as root length, stem diameter, green and dry mass of shoots and roots, number of flowers/plants, number of fruits/plant and productivity in tomato Solanum lycopersicum L. Conclusions: It is a viable, sustainable, and low-cost strategy that contributes to the achievement of the Sustainable Development Goal (SDG 2) and can be replicated in Brazil and worldwide.

Downloads

Download data is not yet available.

References

Bergmann, M., Silveira, C., Martinazzo, R., Bamberg, A. & Grecco, M. (2014, 21 a 26 de setembro). Potencial de aproveitamento económico dos basaltos amigdalóides a zeolitas do Grupo Serra Geral da Bacia do Paraná no Rio Grande do Sul [Trabalhos Apresentados em Eventos]. 47º Congresso Brasileiro de Geologia, Salvador, Bahia, Brazil. https://rigeo.cprm.gov.br/jspui/handle/doc/22680

Burbano, D., Theodoro, S., De Carvalho, A. & Ramos, C. (2022). Crushed volcanic rock as soil remineralizer: a strategy to overcome the global fertilizer crisis. Natural Resources Research, 31, 2197–2210. https://doi.org/10.1007/s11053-022-10107-x

Dalmora, A., Ramos, C., Plata, L., Da Costa, M., Kautzmann, R. & Oliveira, L. (2020). Understanding the mobility of potential nutrients in rock mining by-products: An opportunity for more sustainable agriculture and mining. Science of the Total Environment, 710, 136240. https://doi.org/10.1016/j.scitotenv.2019.136240

Dalmora, A., Ramos, C., Oliveira, M., Oliveira, L., Schneider, I. & Kautzmann, R. (2020). Application of andesite rock as a clean source of fertilizer for eucalyptus crop: Evidence of sustainability. Journal of Cleaner Production, 256, 120432. https://doi.org/10.1016/j.jclepro.2020.120432

Dang, M. (2005). Soil–plant nutrient balance of tea crops in the northern mountainous region, Vietnam. Agriculture, ecosystems & environment, 105(1-2), 413–418. https://doi.org/10.1016/j.agee.2004.05.004

Datnoff, L., Elmer, W. & Huber, D. (2007). Mineral nutrition and plant disease. APS.

De Medeiros, D., Sanchotene, D., Ramos, C., Oliveira, L., Sampaio, C. & Kautzmann, R. (2021). Soybean crops cultivated with dacite rock by-product: A proof of a cleaner technology to soil remineralization. Journal of Environmental Chemical Engineering, 9(6), 106742. https://doi.org/10.1016/j.jece.2021.106742

FAOSTAT. (2020). Food and Agricultural Organization of the United Nations. FAO. http://www.fao.org/faostat/en/#data

Gebremedhin, H., Gebremicheal, M. & Fitsum, G. (2020). The Effects of Nitrogen and Phosphorus Fertilizer Rates on Yield and Quality of Tomato (Solanum lycopersicum L.) in Hawzen, Ethiopia. Research Square, Preprint. https://doi.org/10.21203/rs.3.rs-80064/v1

Huber, D. & Haneklaus, S. (2007). Managing nutrition to control plant disease. Agricultural research Volkenrode, 57(4), 313–322. https://www.openagrar.de/receive/timport_mods_00032245

Kautzmann, R., De Medeiros, D., Dalmora, A., Da Costa, M., Cortina, J. & Sampaio, C. (2020). Caracterização geoquímica de basalto amigdalóide alterado para uso agronômico. BOMGEAM, 7(2), 1–10. https://doi.org/10.31419/ISSN.2594-942X.v72020i2a5RMK

Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296(5573), 1694–1697. https://doi.org/10.1126/science.1071148

Nelson, K., Boiteau, G., Lynch, D., Peters, R. & Fillmore, S. (2011). Influence of agricultural soils on the growth and reproduction of the bio-indicator Folsomia candida. Pedobiologia, 54(2), 79–86. https://doi.org/10.1016/j.pedobi.2010.09.003

Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, development and sustainability, 7, 229–252. https://doi.org/10.1007/s10668-005-7314-2

Ramos, C., Hower, J., Blanco, E., Oliveira, M. & Theodoro, S. (2022). Possibilities of using silicate rock powder: An overview. Geoscience Frontiers, 13(1), 1–11. https://doi.org/10.1016/j.gsf.2021.101185

Ramos, C., Dalmora, A., Kautzmann, R., Hower, J., Dotto, G. & Oliveira, L. (2021). Sustainable release of macronutrients to black oat and maize crops from organically-altered dacite rock powder. Natural Resources Research, 30, 1941–1953. https://doi.org/10.1007/s11053-021-09862-0

Ramos, C., De Medeiros, D., Gomez, L., Oliveira, L., Schneider, I. & Kautzmann, R. (2020). Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Natural Resources Research, 29, 1583–1600. https://doi.org/10.1007/s11053-019-09529-x

República Federativa do Brasil. MAPA. (2016a). IN MAPA No. 5. Ficam estabelecidas as regras sobre definições, classificação, especificações e garantias, tolerâncias, registro, embalagem, rotulagem e propaganda dos remineralizadores e substratos para plantas, destinados à agricultura. Diário Oficial da União, 14 mar 2016. https://www.legisweb.com.br/legislacao/?id=317444

República Federativa do Brasil. MAPA. (2016b). IN SDA N0. 27/2006. Dispõe sobre a importação ou comercialização, para produção, de fertilizantes, corretivos, inoculantes e biofertilizantes, DOU, 9 jun 2016. https://www.legisweb.com.br/legislacao/?id=76854

Shukla, A., Behera, S., Chaudhari, S. & Singh, G. (2022). Fertilizer use in Indian agriculture and its impact on human health and environment. Indian Journal of Fertilizers, 18(3), 218–237.

Stockdale, E., Lampkin, N., Hovi, M., Keatinge, R., Lennartsson, E., Macdonald, D. & Watson, C. (2001). Agronomic and environmental implications of organic farming systems. Advances in Agronomy, 70, 261–327. https://doi.org/10.1016/S0065-2113(01)70007-7

UN. (2015, january 7). Goal 2: Zero Hunger. https://www.un.org/sustainabledevelopment/hunger/

Published

2022-10-29

How to Cite

Dalmora, A. C. ., Müller Kautzmann, R. ., Staub, J., & Homrich Schneider, I. A. (2022). Crushed amygdaloidal basalt rock and its effects on tomato production. LADEe Latin American Developments in Energy Engineering, 3(2), 1–10. https://doi.org/10.17981/ladee.03.02.2022.1