Sustainable use of groundwater and rainwater in concrete construction

Authors

  • Salma Nayeth Eljaiek Martinez Universidad de la Costa
  • Daniel Andrés Badillo Romero Universidad de la Costa
  • Daniel Enrique Abudinen Ordoñez Universidad de la Costa
  • Heidis Patricia Cano Cuadro Universidad de la Costa https://orcid.org/0000-0003-2811-5769

Keywords:

agua subterranea, agua de lluvia, agua de grifo, construcciones, resistencia a la compresion, sostenibilidad

Abstract

Currently, the search for environmentally friendly alternatives in the construction industry is evident, especially in the use of water for concrete mixes. In this research, hydraulic mortar cubes were manufactured and characterized, using groundwater (ASUB), rainwater (AL-GL and AL-BG), and tap water from different cities (AG-BG and AG-GL). Previously analysed by physical and chemical tests. Likewise, the mechanical resistance of the mortars was evaluated using compression tests and they were compared against control mortar cubes prepared with drinking water (AG-BQ). The results indicated that the groundwater is suitable for the manufacture of mortars because the average resistance of the mortar cubes made with this type of water was 96.5% resistance at 7 days with respect to the sample. standard, thus being within the permissible limits according to ASTM C1602-18. The physical and chemical characterization of tap water (AG-BG, AG-GL), rainwater (AL-GL, AL-BG), and groundwater (ASUB) showed similar values ​​in most of the physicochemical parameters measured, except for dissolved oxygen and hardness

Downloads

Download data is not yet available.

References

Aldabagh, I., Abed, J., Khaleel, B. & Hamah Sor, N. (2022). Influence of water quality and slag on the development of mechanical properties of self compacting mortar. Materials Today: Proceedings, 57(2), 892–897. https://doi.org/10.1016/j.matpr.2022.02.575

ASTM. (2022). ASTM C1602/C1602M-12, Standard Specifi cation for Mixing Water Used in the Production of Hydraulic Cement Concrete. ASTM. https://doi.org/10.1520/C1602_C1602M-12

ASTM. (2020). ASTM C109/C109M-02, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM. https://doi.org/10.1520/C0109_C0109M-02

ASTM. (2019). ASTM-C270-19ae1, Standard Specification for Mortar for Unit Masonry. ASTM. https://doi.org/10.1520/C0270-19AE01

ASTM. (2018). ASTM D7315-17, Standard Test Method for Determination of Turbidity Above 1 Turbidity Unit (TU) in Static Mode. ASTM. https://doi.org/10.1520/D7315-17

ASTM. (2003). ASTM C94/C94M-03a, Standard Specification for Ready-Mixed Concrete. ASTM. https://doi.org/10.1520/C0094_C0094M-03

Bellmann, F., Erfurt, W. & Ludwig, H-M. (2012). Field performance of concrete exposed to sulphate and low pH conditions from natural and industrial sources. Cement and Concrete Composites, 34(1), 86–93. https://doi.org/10.1016/j.cemconcomp.2011.07.009

Blanco de la Paz, E., Brown, O. & García, F. (2021). Relationship between rain and groundwater in the hydrogeological sectors of the South Basin of Ciego de Ávila. Inge CUC, 17(2), 125–132. https://repositorio.cuc.edu.co/handle/11323/10267

Burek, P., Satoh, Y., Fischer, G., Kahil, M., Scherzer, A., Tramberend, S., Nava, L., Wada, Y., Eisner, S., Flörke, M., Hanasaki, N., Magnuszewski, P., Cosgrove, B. & W­iberg, D. (2016). Water Futures and Solution. Fast Track Initiative. Final Report, WP-16-006. IIASA. http://pure.iiasa.ac.at/id/eprint/13008/1/WP-16-006.pdf

Cagua, B. y Nates, J. (2017). Influencia del Potencial Hidrógeno (pH) y la Concentración de Nitratos presentes en el Agua de Mezclado sobre el comportamiento fisico-mecánico del Hormigón: Estudio en Laboratorio [Tesis de grado, Escuela Politecnica Nacional]. BIB Digital. https://bibdigital.epn.edu.ec/handle/15000/17062

Chung, K., Wang, L., Ghannam, M., Guan, M. & Luo, J. (2020). Prediction of concrete compressive strength based on early-age effective conductivity measurement. Journal of Building Engineering, 35, 1–19. https://doi.org/10.1016/J.JOBE.2020.101998

Fernández-Jiménez, A. & Palomo, A. (2009). Properties and uses of alkali cements. R­evista Ingenieria de Construccion, 24(3), 213–232. http://dx.doi.org/10.4067/S0718-50732009000300001

Gramsch, J. (2018, mayo 15). Análisis de Confiabilidad y Estimación de Probabilidad de Colapso en una Planta Industrial. Linkedin. https://www.linkedin.com/pulse/an%C3%A1lisis-de-confiabilidad-y-estimaci%C3%B3n-probabilidad-en-gramsch-labra/?originalSubdomain=es

Granados, J. (2017). Grado de Presencia del Sulfato con la Resistencia a la Compresión del Concreto, en la Ciudad de Huaraz, 2016-2017 [Tesis de grado, Universidad Nacional de Ancash]. Repositorio UNASAM. http://repositorio.unasam.edu.pe/handle/UNASAM/1959

Icontec. (2001). NTC-3459: 2001, Concretos. Agua para la elaboracion de concreto. Icontec. https://metroblock.com.co/norma-tecnica-colombiana-ntc-3459/#:~:text=El%20agua%20debe%20ser%20clara,el%20concreto%20o%20el%20refuerzo

Kim, J., Honda, D., Choi, H. & Hama, Y. (2019). Investigation of the Relationship between Compressive Strength and Hydrate Formation Behavior of Low-Temperature Cured Cement upon Addition of a Nitrite-Based Accelerator. Materials, 12(23), 1–11. https://doi.org/10.3390/ma12233936

Mekonnen, M. & Hoekstra, A. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), 1–6. https://doi.org/10.1126/sciadv.1500323

Quilla, H. y Quiroz, E. (2021). Uso del agua subterránea y agua potable para determinar la resistencia a compresión del concreto estructural, Juliaca 2021 [Tesis grado, Universidad Cesar Vallejo]. Repositorio Digital Institucional. https://repositorio.ucv.edu.pe/handle/20.500.12692/66017

República de Colombia. Ministerio de la Protección Social y Ministerio de Medio Ambiente Vivienda y Desarrollo Territorial. (2007). Resolución 2115, por medio de la cual se señalan características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano. DO 46.679. http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/normativa/Res_2115_de_2007.pdf

Saba, M., Quiñones-Bolaños, E. & Martínez Batista, H. (2019). Impact of environmental factors on the deterioration of the Wall of Cartagena de Indias. Journal of Cultural Heritage, 39, 305–313. https://doi.org/10.1016/J.CULHER.2019.03.001

Sánchez, D. (2001). Tecnología del Concreto y del Mortero (5 Ed.). Bhandar Editores.

Sheikh, M., Asadollahfardi, G. & Saghravani, S. (2020). Durability and morphological assessment of concrete manufactured with sewage. Construction and Building Materials, 264, 1-101–1-110. https://doi.org/10.1016/j.conbuildmat.2020.120202

Unión Europea. Consejo de la Unión Europea. (1998). Directiva 98/83/CE, relativa a la calidad de las aguas destinadas al consumo humano. Diario Oficial de las Comunidades Europeas, L 330/32. http://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex:31998L0083

Published

2023-12-09

How to Cite

Eljaiek Martinez, S. N., Badillo Romero, D. A., Abudinen Ordoñez, D. E., & Cano Cuadro, H. P. (2023). Sustainable use of groundwater and rainwater in concrete construction. MÓDULO ARQUITECTURA CUC, 32, 25–48. Retrieved from https://ojstest.certika.co/moduloarquitecturacuc/article/view/5425

Issue

Section

Artículos y Obras