Evolución del daño mecánico del concreto SFRC sometido a flexión mediante el análisis de la velocidad del pulso ultrasónico

Autores/as

DOI:

https://doi.org/10.17981/ingecuc.16.1.2020.15

Palabras clave:

velocidad de pulso ultrasónico, daño mecánico, evolución del daño, concreto reforzado con fibras de acero, SFRC, métodos indirectos

Resumen

Introducción: En el presente artículo se realiza un análisis de la evolución del daño mecánico del concreto reforzado con fibras de acero (SFRC, Steel Fiber Reinfoced Concrete) y la velocidad de pulso ultrasónico (UPV) propagada; con la finalidad de correlacionar el UPV y el daño mecánico en elementos de concreto con diferentes dosificaciones de fibras de acero. Para lo cual se fabricaron 45 probetas en concreto, con dosificaciones de 0 kg/m3; 25 kg/m3 y 70 kg/m3, y resistencias promedio a la compresión [1] de 57 MPa, 53 MPa y 44 MPa y a la flexión [2] de 5,49 MPa, 7,20 MPa y 9,60 MPa, esclareciendo que en los elementos probados se midieron carga, deflexión y velocidad de pulso ultrasónico en simultaneo; obteniendo parámetros que permitieron generar ecuaciones predictivas del daño en una escala de 0 a 1, teniendo en cuenta que un daño mecánico es avanzado cuando un elemento tiene una alta fisuración y por lo tanto se disminuirá su capacidad de resistencia mecánica (cuando el valor es cercano o igual a 1) [3]; adicionalmente con la realización del proyecto se demuestra que la inclusión de fibras de acero ocasiona en el concreto un comportamiento dúctil con un aumento en resistencia mecánica a flexión y fatiga. Concluyendo que es posible predecir el daño mecánico del concreto mediante la aplicación de técnicas de medición indirectas, que ayudaran a la evaluación patológica de elementos, así como se demuestra la utilidad del emplear fibras de acero en el concreto para mejorar sus propiedades mecánicas.

Objetivo: Estimar la evolución del daño mecánico del concreto tipo SFRC, mediante la medición de la velocidad de pulso ultrasónico, correlacionando con la resistencia a la flexión, obteniendo ecuaciones de predicción del daño y gráficas de comportamiento mecánico.

Metodología: Para la realización del proyecto se aplica un modelo experimental; iniciando con una búsqueda primaria de información sobre concretos fibro-reforzado y métodos de inspección indirecta, luego se definió las dosificaciones y mezclas de concreto que se van a realizar y se fabrica los elementos de prueba; después se realiza las pruebas experimentales analizando sus resultados, por último, se concluye sobre los resultados obtenidos.

Resultados: Se obtiene ecuaciones predictivas y gráficas de comportamiento mecánico, las cuales permitirán que al inspeccionar un elemento de concreto simple y concreto SFRC, se obtenga en primera instancia, una idea del daño mecánico del concreto, lo que permitiría establecer el estado físico en el que se encuentra un elemento fabricado en este material.

Conclusiones: A medida que se presente daño mecánico en un elemento de concreto, estos aumentarán su fisuración y por lo tanto su densidad disminuirá; esta característica se puede medir con la velocidad de pulso propagada; consiguiente la predicción de la integralidad del estado físico en el que se encuentra un elemento será predecible, permitiendo conocer si una estructura en concreto se encuentra en riesgo de colapso o cercano al mismo; lo anterior cobra mayor importancia en estructuras sometidas a flexión (propiedad en la cual el concreto ofrece baja resistencia, con respecto a la resistencia a la compresión), tal como un puente, una vía vehicular o vigas de una edificación. Con las ecuaciones expuestas, se demuestra que en un daño mecánico inferior a 0,5, la estructura se fisura, pero no colapsará, en cambio si el daño es superior a 0,5 la estructura se encuentra tan fisurada que no podrá soportar la carga máxima de diseño y por lo cual puede colapsar. De la misma manera, en el proyecto se demuestra que las fibras de acero aumentan la resistencia a la flexión y tenacidad del concreto en por lo menos un 30%, lo que implica su utilidad para la construcción de elementos descritos anteriormente.

Esta investigación es una primera afirmación y permitirá ampliar las posibilidades que tienen las metodologías de inspección indirecta en el campo del estudio estructural en Ingeniería Civil, así como el empleo de fibras de acero como adiciones, que mejoran las propiedades mecánicas del concreto.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ASTM, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, USA: ASTM, American Society for Testing and Materials, 2017.

ACI, Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete ACI 211.1. Chicago, USA: ACI, American Concrete Institute, 2009.

J. Lemaitre, Mechanics of Solid Materials. Cambridge, USA: CU, 2009.

D. Sánchez, Tecnología del Concreto. Bogotá D.C., CO: Bhandar Editores, 2001.

P. Marmol, “Hormigones con fibras de acero. caracteristicas mecanicas”, M. S. Thesis. Depto. Ing. Civ. UPM, Madrid, ES, 2010.

M. Á. Ospina, L. Á. Moreno & K. A. Rodríguez, “Technical-economic analysis about use the recycle concrete, comparative with convetional concrete in Colombia”, Actas Ing., vol. 3, pp. 36–47, Aug. 2017.

G. Jianming, W. Sun & K. Morino, “Mechanical Propierties of Steel Fiber-reinforced, High-strength, Lightweight Concrete”, Cem. Concr. Compos., vol. 19, no. 4, pp. 307–313, Aug. 2007. https://doi.org/10.3390/ma12152470

J. A. Bogas, M. G. Gómez & A. Gómez, “Compressive strength evaluation of structural light weight Concrete by non-destructive ultrasonic pulse velocity method”, ScienceDirect, vol. 53, no. 5, pp. 962–972, Jul. 2013. https://doi.org/10.1016/j.ultras.2012.12.012

J. León, J. Lizarazo & J. Carrillo, “Material Damage Evolution for Plain and Steel-Fiber-Reinforced”, AJSE, vol. 43, pp. 1–9, May. 2018.

R. Carcaño, E. Moreno & W. Castillo, “Predicción de la resistencia del concreto con base en la velocidad de pulso ultrasónico y un índice de calidad de los agregados”, Ing. Rev. Académic., vol. 8, no. 2, pp. 41–52, Jan. 2004.

X. Guan, X. Liu, X. Jia, Y. Yuan, J. Cui & H. Mang, “A stochastic multiscale model for predicting mechanical propierties of fiber reinforced concrete”, Intl. J. Solids. Struct., vol. 56-57, pp. 280–289, Mar. 2015. https://doi.org/10.1016/j.ijsolstr.2014.10.008

P. Song & S. Hwang, “Mechanical propierties of high.strengh steel fiber-reinforced Concrete”, Constr. Build. Mater, vol. 18, no. 9, pp. 669–673, Nov. 2004. https://doi.org/10.1016/j.conbuildmat.2004.04.027

ARGOS, Tecnología del Concreto y sus Componentes. Bogotá D. C.: Asocreto, 2010.

Y. Ding & K. Wolfgang, “Comparative study of steel fibre-reinforced concrete and steel mesh-reinforced concrete at early ages in panel tests”, Cem. Concr. Res, vol. 29, no. 11, pp. 1827–1834, Nov. 1999. https://doi.org/10.1016/S0008-8846(99)00177-5

J. Karadelis & Y. Lin, “Flexural strengths and fibre efficiency of steel-fibre-reinforced, roller-compacted, polymer modified concrete”, Constr. Build. Mater, vol. 93, pp. 498–505, Sept. 2015.

ACI, Guide for Specifying, Proportioning, and Production of Fiber-Reinforced Concrete. ACI 544.4 R-08. Farmington Hills, USA: ACI, American Concrete Institute, 2008.

ASTM, Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading). ASTM-C-1609. Philadelphia, USA: ASTM, American Society for Testing and Materials, 2012.

ASTM, Standard Test Method for Compressive Strength of Cylindric Concrete Specimens. ASTM C39. Philadelphia, USA: ASTM, American Society for Testing and Materials, 2012.

ASTM, Standard Test Method for Determination of Diametrical Compressive Tensile Strength of Cylindrical Concrete Specimens. ASTM C496/C496M-17. Philadelphia, USA: ASTM, American Society for Testing and Materials, 2012.

AIS, Reglamento Colombiano de construcción sismo resistente. NSR-10. Bogotá, D. C.: AIS, Asociación Colombiana de Ingeniería Sísmica, 2010.

Publicado

2020-03-02

Cómo citar

Ospina García, M. Ángel, Lizarazo, J. M., & Salas Montoya, A. (2020). Evolución del daño mecánico del concreto SFRC sometido a flexión mediante el análisis de la velocidad del pulso ultrasónico. Inge Cuc, 16(1), 205–216. https://doi.org/10.17981/ingecuc.16.1.2020.15

Número

Sección

Artículos

Artículos más leídos del mismo autor/a