Automatización de cultivos aeropónicos de cilantro libres de pesticidas

Autores/as

DOI:

https://doi.org/10.17981/ingecuc.15.1.2019.11

Palabras clave:

aeroponía, sistemas de irrigación autónoma, producción limpia, fuente de potencia eléctrica autónoma, alimentos libres de pesticidas

Resumen

Introducción: La aeroponía permite la posibilidad de cultivar plantas, en lugares donde la agricultura convencional de campo abierto es difícil. El uso de la tecnología permite mejorar la eficiencia de los procesos, aunque se requiere incorporar algunas mejoras y soluciones en los sistemas de suministro energético y control del riego.

Objetivo: Implementar una fuente autónoma de suministro energético y un sistema de control del riego para la producción de alimentos libres de pesticidas.

Metodología: El sistema autónomo se diseñó utilizando la herramienta Matlab-Simulink-MPLAB, para desarrollar el modelo de control y aplicarlo al cultivo. Además, se programó un dsPIC para los algoritmos de control del ciclo de riego utilizando bloques Matlab-Simulink.

Resultados: Los resultados muestran que el ciclo de riego y el suministro de energía, ayudan a mantener plantas uniformes en el cultivo durante el periodo de las pruebas, lo que permite a su vez incorporar mejoras en el desarrollo de los cultivos aeropónicos.

Conclusiones: Cultivar de manera aeropónica reduce el uso de pesticidas, espacio, agua y nutrientes. La automatización en los sistemas de irrigación y de suministro de potencia, permite lograr un buen crecimiento en el cilantro, lo cual se puede evidenciar mediante el incremento en los niveles de peso y volumen, registrados en las mediciones de las plantas de prueba.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Fredy Hoyos Velasco, Universidad Nacional de Colombia. Sede Medellín, Medellín (Colombia)

received his BS and MS degree from Universidad Nacional de Colombia, Manizales -Colombia, in Electrical Engineering and Industrial Automation, in 2006 and 2009, respectively, and Industrial Automation Ph.D. in 2012. Dr. Hoyos is currently an Associate Professor of the Science Faculty, School of Physics, at Universidad Nacional de Colombia, Medellin-Colombia. His research interests include nonlinear control, system modelling, nonlinear dynamics analysis, control of nonsmooth systems, and power electronics, with application within a broad area of technological process. He is an Associate Researcher at Colciencias and member of the Applied Technologies Research Group - GITA at Universidad Nacional de Colombia. https://orcid.org/0000-0001-8766-5192

John E. Candelo, Universidad Nacional de Colombia - Sede Medellín, Medellín (Colombia)

received his B.S. degree in electrical engineering in 2002 and his Ph.D. in engineering with an emphasis in electrical engineering in 2009 from Universidad del Valle, Cali - Colombia. His employment experiences include the Empresa de Energía del Pacífico EPSA, Universidad del Norte, and Universidad Nacional de Colombia. He is now an Associate Professor at the Universidad Nacional de Colombia-Sede Medellín, Colombia. His research interests include engineering education, planning, operation and control of power systems, artificial intelligence, and smart grids. He is a Senior Researcher at Colciencias and member of the Applied Technologies Research Group - GITA at Universidad Nacional de Colombia. http://orcid.org/0000-0002-9784-9494

Hector J. Chavarria, Empresa Aeropónicos de Colombia. Medellín, (Colombia)

received his B.S. degree in agricultural engineer in 2007 and currently works for Aeropónicos de Colombia. His interests are the agricultural production of pesticide-free food and, more recently, aeroponic crops.

Citas

CEPAL, “Perspectivas del Comercio Internacional de América Latina y el Caribe 2018: las tensions comerciales exigen una mayor integración regional,” in Perspectivas económicas de América Latina 2018, Repensando las instituciones para el desarrollo, París, France: OECD Publishing, 2018, doi: https://doi.org/10.1787/leo-2018-graph58-es

K. K. R. Lakkireddy, K. Kasturi and K. R. S. Sambasiva Rao, “Role of Hydroponics and Aeroponics in Soilless Culture in Commercial Food Production,” Res. Rev. J. Agric. Sci. Technol., vol. 1, no. 3, pp. 26–35, Apr. 2012. Available: http://sciencejournals.stmjournals.in/index.php/RRJoAST/article/view/800

I. Y. R. Odegard and E. van der Voet, “The future of food–Scenarios and the effect on natural resource use in agriculture in 2050,” Ecol. Econ., vol. 97, pp. 51–59, Jan. 2014, doi: https://doi.org/10.1016/j.ecolecon.2013.10.005

J. J. Cabello, A. Sagastume, E. López-Bastida, C. Vandecasteele, and L. Hens, “Water Footprint from Growing Potato Crops in Cuba,” Tecnol. y Ciencias del Agua, vol. 7, no. 1, pp. 107–116, Jan. 2016. Available: http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/1154/1058

M. A. García Samper, J. G. Guiliany, and J. C. Eras, “Eficiencia en el uso de los recursos y producción más limpia (RECP) para la competitividad del sector hotelero,” Rev. Gestão Soc. e Ambient., vol. 11, no. 2, p. 18, Aug. 2017, doi: https://doi.org/10.24857/rgsa.v11i2.1252

P. A. Ochoa George, J. J. C. Eras, A. S. Gutierrez, L. Hens, and C. Vandecasteele, “Residue from Sugarcane Juice Filtration (Filter Cake): Energy Use at the Sugar Factory,” Waste and Biomass Valorization, vol. 1, no. 4, pp. 407–413, Dec. 2010, doi: https://doi.org/10.1007/s12649-010-9046-2

W. T. Runia, “A review of possibilities for disinfection of recirculation water from soilless culture,” in Acta Hortic., vol. 382, IV International Symposium on Soil and Substrate Infestation and Disinfestation, (Leuven, Belgium), 1995, pp. 221–229, doi: https://doi.org/10.17660/actahortic.1995.382.25

E. Ojeda Camargo, J. E. Candelo Becerra and J. I. Silva-Ortega, “Solar and wind energy potential characterization to integrate sustainable projects in native communities in La Guajira Colombia,” Espacios, vol. 38, no. 37, Aug. 2017.

A. Vides-Prado, E. Ojeda, C. Vides-Prado, I. Herrera, F. Chenlo and A. Barrios, “Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira,” Renew. Sustain. Energy Rev., vol. 82, no. 3, pp. 4245–4255. Feb. 2018, doi: https://doi.org/10.1016/j.rser.2017.05.101

E. Molina, J. E. Candelo-Becerra and E. Ojeda-Camargo, “Understanding Electricity Saving Behavior of Rural Indigenous Communities in La Guajira Department, Colombia,” J. Eng. Sci. Technol. Rev., vol. 11, no. 6, pp. 47–53, Dec. 2018, doi: https://doi.org/10.25103/jestr.116.07

A. Hoehn, “Root Wetting Experiments aboard NASA’s KC-135 Microgravity Simulator,” BioServe Sp. Technol., 1998.

W. A. Carter, “A method of growing plants in water vapor to facilitate examination of roots,” Phytopathology, vol. 732, pp. 623–625, 1942.

R. Bisgrove, “Urban horticulture: future scenarios,” Acta Hortic., no. 881, II International Conference on Landscape and Urban Horticulture, (Bologna, Italy), 2010, pp. 33–46, doi: https://doi.org/10.17660/actahortic.2010.881.1

Mei-Yu Wu, Ya-Hui Lin and Chih-Kun Ke, “Monitoring management platform for Plant Factory,” in The 16th North-East Asia Symp. Nano, Information Technology and Reliability, (Macao, China), 2011, pp. 49–52, doi: https://doi.org/10.1109/nasnit.2011.6111120

M. Sugano, “Elemental technologies for realizing a fully-controlled artificial light-type plant factory,” in 2015 12th Int. Conf. & Expo on Emerging Technologies for a Smarter World (CEWIT), (Melville, NY, USA), 2015, pp. 1–5, doi: https://doi.org/10.1109/cewit.2015.7338169

T. Liu, A. Janku and D. Pietz, Landscape Change and Resource Utilization in East Asia: Perspectives from Environmental History. Academia Sinica on East Asia and Academia Sinica Taiwan, London, UK: Routledge, 2018, doi: https://doi.org/10.4324/9781351182928

NASA Spinoff, “Progressive Plant Growing Has Business Blooming,” Environmental and Agricultural Resources, 2006.

M. Björkman, I. Klingen, A. Birch, A. Bones, T. Bruce, T. Johansen, R. Meadow, J. Mølmann, R. Seljåsen, L. Smart and D. Stewart, “Phytochemicals of Brassicaceae in plant protection and human health--influences of climate, environment and agronomic practice.,” Phytochemistry, vol. 72, no. 7, pp. 538–56, May. 2011, doi: https://doi.org/10.1016/j.phytochem.2011.01.014

M. Dekker and R. Verkerk, “Dealing with variability in food production chains: A tool to enhance the sensitivity of epidemiological studies on phytochemicals,” Eur. J. Nutr., vol. 42, no. 1, pp. 67–72, Feb. 2003, doi: https://doi.org/10.1007/s00394-003-0412-8

J. D. Hayes, M. O. Kelleher and I. M. Eggleston, “The cancer chemopreventive actions of phytochemicals derived from glucosinolates,” Eur. J. Nutr., vol. 47, no. Suppl. 2, pp. 73–88, May. 2008, doi: https://doi.org/10.1007/s00394-008-2009-8

S. Kumar, T. Jawaid and S. Dubey, “Therapeutic Plants of Ayurveda; A Review on Anticancer,” Pharmacogn. J., vol. 3, no. 23, pp. 01-11, Jul. 2011, doi: https://doi.org/10.5530/pj.2011.23.1

M. Villatoro-Pulido et al., “In vivo biological activity of rocket extracts (Eruca vesicaria subsp. sativa (Miller) Thell) and sulforaphane.,” Food Chem. Toxicol., vol. 50, no. 5, pp. 1384–92, May. 2012, doi: https://doi.org/10.1016/j.fct.2012.02.017

Publicado

2019-05-05

Cómo citar

Hoyos Velasco, F., Candelo, J. E., & Chavarria, H. J. (2019). Automatización de cultivos aeropónicos de cilantro libres de pesticidas. Inge Cuc, 15(1), 123–132. https://doi.org/10.17981/ingecuc.15.1.2019.11

Número

Sección

ARTÍCULOS

Artículos más leídos del mismo autor/a