Value at Risk and simulation: a systematic review

Authors

DOI:

https://doi.org/10.17981/econcuc.43.1.2022.Econ.3

Keywords:

Value at Risk, VaR, Bibliometric, Risk, Scientific Mapping

Abstract

Value at Risk is the market measure used by financial institutions and adopted by the Basel Committee to calculate and manage risk, making it a necessary measure for the financial sector. In this article, a bibliometric study of Value at Risk (VaR) is carried out and its calculation using simulation processes. For this purpose, a review was made of the research published over the last 20 years in the Scopus and Web of Science databases, compiling the most relevant documents for analysis. Subsequently, the justification of the topic is presented, and the social network is elaborated using the tree analogy, in which each of the most important documents is classified as root, stem, or leaf. Finally, the research perspectives of the topic are identified through a cocitations analysis. It is concluded that women have a high degree of participation in managerial positions, however, a significant difference of 3,492,556 pesos is noted in the salaries of the two sexes, where men are the ones who obtain the highest income.

Downloads

Download data is not yet available.

Author Biographies

Mauren Silene Pineda Guerrero, Casautos / Caja de Compensación Familiar de Caldas

She is a Finance Technologist from the University of Caldas, Financial Administrator from the Universidad de Caldas. Member of the research group in quantitative Finance attached to the Faculty of Administration of the Universidad Nacional de Colombia Manizales Headquarters

Alberto Antonio Agudelo Aguirre, Universidad Nacional de Colombia

He is a Professional in Business Administration from the Universidad Nacional de Colombia Manizales Headquarters. With a specialization in Administrative and Financial Engineering from the Universidad Nacional de Colombia Medellín Headquarters. Master (MsC) in Administration with an emphasis in Finance from the Universidad Nacional de Colombia Manizales Headquarters, and PhD in Finance from the Universidad del CEMA in Buenos Aires Argentina. His academic interests are focused on the analysis of investment in the capital market and the analysis and management of project risk, corporate risk and investment risk. Currently I work as associate professor in the Administration department of the Universidad Nacional de Colombia Manizales Headquarters, in the area of ​​finance

Ricardo Alfredo Rojas Medina, Universidad Nacional de Colombia

He is a Public Accountant graduated from the Universidad Externado de Colombia. Specialist in Socioeconomic Evaluation of Projects from the Universidad de Antioquia. Master in Operations Research and Statistics from the Universidad Tecnológica de Pereira. Coordinator of the GTA Quantitative Finance. Associate professor at the Universidad Nacional de Colombia, Manizales campus. Expert in the design and implementation of costs and their usefulness for analysis and decision making; teacher in different university levels guiding subjects of cost systems, administrative accounting, managerial accounting, financial accounting, financial simulation, statistics.

Pedro Luis Duque Hurtado, Universidad Católica Luis Amigó

He is a full-time research professor at the Universidad Católica Luis Amigó. Business Administrator, Master in Administration, PhD student in Administration from the Universidad Nacional de Colombia. Marketing as the main area of ​​interest.

References

Andersonn, F., Mausser, H., Rosen, D. & Uryasev, S. (2001). Credit risk optimization with Conditional Value-at-Risk criterion. Mathemastical Programming, 89(2), 273–291. https://doi.org/10.1007/PL00011399

Andriosopoulos, K. & Nomikos, N. (2015). Risk management in the energy markets and Value-at-Risk modelling: a hybrid approach. The European Journal of Finance, 21(7), 548–574. https://doi.org/10.1080/1351847X.2013.862173

Aria, M, y Cuccurullo, C. (2017). Bibliometrix: una herramienta R para el análisis exhaustivo de la cartografía científica. Journal of Informetrics, 11(4), 959–975. Disponible en https://doi.org/10.1016/j.joi.2017.08.007

Artzner, P., Delbaen, F., Eber, J. & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203–228. https://doi.org/10.1111/1467-9965.00068

Asimit, V., Peng, L., Wang, R. y Yu, A. (2019). An efficient approach to quantile capital allocation and sensitivity analysis. Mathematical Finance, 29(4), 1131–1156. https://doi.org/10.1111/mafi.12211

Babazadeh, H. & Esfahanipour, A. (2019). A novel multi period mean-VaR portfolio optimization model considering practical constraints and transaction cost. Journal of Computational and Applied Mathematics, 361(1), 313–342. https://doi.org/10.1016/j.cam.2018.10.039

Bastian, M., Heymann, S. & Jacomy, M. (May. 2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Presentation at Third International Conference on Weblogs and Social Media. ICWSM, San José, CA, USA. https://doi.org/10.13140/2.1.1341.1520

BIS. (2011). El Nuevo Acuerdo de Capital de Basilea. [Documento Consultivo]. Basilea: BIS. Recuperado de https://www.bis.org/publ/bcbsca03_s.pdf

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1

Broadie, M., Du, Y. & Moallemi, C. C. (2011). Efficient Risk Estimation via Nested Sequential Simulation. Management Science, 57(6), 1172–1194. https://doi.org/10.1287/mnsc.1110.1330

Buitrago, S., Duque, P. y Robledo, S. (2020). Branding Corporativo: una revisión bibliográfica. Económicas CUC, 41(1), 143–162. https://doi.org/10.17981/econcuc.41.1.2020.Org.1

Chen, Q., Gerlach, R. & Lu, Z. (2012). Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution. Computational Statistics and Data Analysis, 56(11), 3498–3516. https://doi.org/10.1016/j.csda.2010.06.018

Colletaz, G., Hurlin, C. & Pérignon, C. (2013). The Risk Map: A new tool for validating risk models. Journal of Banking & Finance, 37(10), 3843–3854. https://doi.org/10.1016/j.jbankfin.2013.06.006

Dahlgreen, R., Ching, C. & Lawarree, J. (2003). Risk Assessment in Energy Trading. IEEE Transactions on Power Systems, 18(2), 503–511. https://doi.org/10.1109/TPWRS.2003.810685

Du, Z. & Escanciano, J. C. (2017). Backtesting Expected Shortfall: Accounting for Tail Risk. Management Science, 63(4), 940–958. https://doi.org/10.1287/mnsc.2015.2342

Duffie, D. & Pan, J. (1997). An Overview of Value at Risk. The Journal of Derivatives. 4(3), 7–49. https://doi.org/10.3905/JOD.1997.407971

Duque, P. y Cervantes-Cervantes, L.-S. (2019). Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales, 35(153), 451–464. https://doi.org/10.18046/j.estger.2019.153.3389

Duque, P. y Duque, E. (2020). Marketing digital y comercio electrónico: un análisis bibliométrico. En: M. Redondo, A. Barrera y C. Duque (eds.), Nuevos modelos de negocio (pp. 73–96). Pereira: Unilibre. Disponible en https://hdl.handle.net/10901/18463

Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773

Engle, R. F. & Manganelli, S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business & Economic Statistics, 22,367–381. https://doi.org/10.1198/073500104000000370

Escanciano, J. C. & Pei, P. (2012). Pitfalls in backtesting Historical Simulation VaR models. Journal of Banking & Finance, 36(8), 2233–2244. https://doi.org/10.1016/j.jbankfin.2012.04.004

Gaglianone, W., Renato, L., Linton, O. & Smith, D. (2011). Evaluating Value-at-Risk Models via Quantile Regression. Journal of Business & Economic Statistics, 29(1), 150–160. https://doi.org/10.1198/jbes.2010.07318

Gaio, L., Pimenta, T., Guasti, F., Passos, I. & Oliveira, N. (2018). Value-at-risk performance in emerging and developed countries. International Journal of Managerial Finance, 14(5), 591–612. https://doi.org/10.1108/IJMF-10-2017-0244

Gephi. (versión 0.9.2). Gephi. [Visualization and exploration software for graphs and networks]. Compiègne: UTC. Available: https://gephi.org

Gencay, R. & Selcuk, F. (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 20(2), 287–303. https://doi.org/10.1016/j.ijforecast.2003.09.005

Gençay, R., Selçuk, F. & Ulugülyagci, A. (2003). High volatility, thick tails and extreme value theory in value-at-risk estimation. Insurance. Mathematics and Economics, 33(2), 337–356. https://doi.org/10.1016/J.INSMATHECO.2003.07.004

Glasserman, P. & Li, J. (2005). Importance Sampling for Portfolio Credit Risk. Management Science, 51(11), 1643–1656. https://doi.org/10.1287/mnsc.1050.0415

Glasserman, P., Heilderberg, P. & Shahabuddin, P. (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, 12(3), 239–269. https://doi.org/10.1111/1467-9965.00141

Glosten, L. R., Jagannathan, R. & Runkle, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess. The Journal of Finance, 48(5), 1779–1801. https://doi.org/10.2307/2329067

Gordy, M. B. & Juneja, S. (2010). Nested Simulation in Portfolio Risk Measurement. Management Science, 56(10), 1833–1848. https://doi.org/10.1287/mnsc.1100.1213

Hong, L. J. (2009). Estimating Quantile Sensitivities. Operations Research, 57(1), 118–130. https://doi.org/10.1287/opre.1080.0531

Huang, D., Zhub, S., Fabozzi, F. & Fukushima, M. (2008). Portfolio selection with uncertain exit time: A robust CVaR approach. Journal of Economic Dynamics & Control, 32(2), 594–623. https://doi.org/10.1016/j.jedc.2007.03.003

Jabr, R. A. (2005). Robust Self-Scheduling Under Price Uncertainty Using Conditional Value-at-Risk. IEEE Transactions on Power Systems, 20(4), 1852–1858. https://doi.org/10.1109/TPWRS.2005.856952

Kennedy, J. & Elberhart, R. (Nov. 1995). Particle Swarm Optimization. Presented at Third International Conference on Neural Networks, ICNN, Perth, WA, Australia. https://doi.org/10.1109/ICNN.1995.488968

Kupiec, P. H. (1995). Techniques for Verifying the Accuracy of Risk Measurement Models. The Journal of Derivatives, 3(2), 73–84. https://doi.org/10.3905/JOD.1995.407942

Kuester, K., Mittnik, S. & Paoella, M. (2005). Value-at-Risk Prediction: A Comparison of Alternative Strategies. Journal of Financial Econometrics, 4(1), 53–89. https://doi.org/10.1093/jjfinec/nbj002

Liu, B. & Liu, Y.-K. (2002). Expected Value of Fuzzy Variable and Fuzzy Expected Value Models. IEEE Transactions on Fuzzy Systems, 10(4), 445–450. https://doi.org/10.1109/TFUZZ.2002.800692

Lwin, K. T., Qu, R. & MacCarthy, B. L. (2017). Mean-VaR Portfolio Optimization: A Nonparametric Approach. European Journal of Operational Research, 260(2), 751–766. https://doi.org/10.1016/j.ejor.2017.01.005

Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Marimoutou, V., Raggad, B. & Trabelsi, A. (2009). Extreme Value Theory and Value at Risk: Application to oil market. Energy Economics, 31(4), 519–530. https://doi.org/10.1016/j.eneco.2009.02.005

McNeil, A. J. & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7(3-4), 271–300. https://doi.org/10.1016/S0927-5398(00)00012-8

Moazeni, S., Coleman, T. F. & Li, Y. (2013). Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy. Annals of Operations Research, 237, 99–120. https://doi.org/10.1007/s10479-013-1391-7

Muller, F. M. & Brutti, M. (2017). Numerical comparison of multivariate models to forecasting risk measures. Risk Management, 20(1), 29–50. https://doi. org/10.1057/s41283-017-0026-8

Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260

Novales, A., & Garcia-Jorcano, L. (2018). Backtesting extreme value theory models of expected shortfall. Quantitative Finance, 19(5), 799–825. https://doi.org/10.1080/14697688.2018.1535182

Paolella, M. (2017). The Univariate Collapsing Method for Portfolio Optimization. Econometrics, 5(2), 1–33. https://doi.org/10.3390/econometrics5020018

Perignon, C. & Smith, D. (2010). The level and quality of Value-at-Risk disclosure by commercial Banks. Journal of Banking & Finance, 34(2), 362–377. https://doi.org/10.1016/J.JBANKFIN.2009.08.009

Pritsker, M. (2006). The hidden dangers of historical simulation. Journal of Banking & Finance, 30(2), 561–582. https://doi.org/10.1016/j.jbankfin.2005.04.013

R. (version 3). Statistical computing and graphics. [Software environment]. Vienna: R Core Team. Available: https://www.r-project.org/

Robledo, S., Osorio, G. y López, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Revista Vínculos, 11(2), 117–134. https://revistas.udistrital.edu.co/index.php/vinculos/article/view/9664

Rockafellar, R. T. & Uryasev, S. (2000). Optimization of conditional value-at-risk. Risk.net, 2(3), 21–41. https://doi.org/10.21314/JOR.2000.038

Scheller, F. & Auer, B. (2018). How does the choice of Value-at-Risk estimator influence asset allocation decisions? Quantitative Finance, 18(12), 2005–2022. https://doi.org/10.1080/14697688.2018.1459806

Sci2 Tool. (versión 1.3). Science of Science. [Software]. Bloomington: CNS. Available: https://sci2.cns.iu.edu/user/index.php

Vijverberg, C.-P. C., Vijverberg, W. P. M. & Taşpınar, S. (2015). Linking Tukey’s Legacy to Financial Risk Measurement. Computational Statistics and Data Analysis, 100, 595–615. https://doi.org/10.1016/j.csda.2015.08.018

Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge: CUP. https://doi.org/10.1017/CBO9780511815478

Wang, B., Wang, S. & Watadata, J. (2011). Fuzzy-Portfolio-Selection Models With Value-at-Risk. IEEE Transactions on Fuzzy Systems, 19(4), 758–769. https://

doi.org/10.1109/TFUZZ.2011.2144599

Wang, C., Chen, Q. & Gerlach, R. (2018). Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution. Quantitative Finance, 19(6), 1017–1042. https://doi.org/10.1080/14697688.2018.1540880

Xu, L. (2014). Model-free inference for tail risk measures. Econometric Theory, 34(3), 1–32. https://doi.org/10.1017/S0266466614000802

Yao, H., Li, Z. & Lai, Y. (2013). Mean–CVaR portfolio selection: A nonparametric estimation framework. Computers & Operations Research, 40(4), 1014–1044. https://doi.org/10.1016/J.COR.2012.11.007

Zaichao, Du. & Escanciano, J. C. (2016). Backtesting Expected Shortfall: Accounting for Tail Risk. Management Science, 63(4), 940–958. https://doi.org/10.1287/mnsc.2015.2342

Zhang, L., Luo, M. & Boncella, R. (2017). Product information diffusion in a social network. Electronic Commerce Research, 20(1), 3–19. https://doi.org/10.1007/s10660-018-9316-9

Zhang, Q. & Wang, X. (2009). Hedge Contract Characterization and Risk-Constrained Electricity Procurement. IEEE Transactions on Power Systems, 24(3), 1547–1548. https://doi.org/10.1109/TPWRS.2009.2021233

Ziggel, D., Berens, T., Weib, G. & Wied, D. (2014). A new set of improved Valueat-Risk back tests. Journal of Banking & Finance, 48(C), 29–41. https://doi.org/10.1016/J.JBANKFIN.2014.07.005

Zuluaga, M., Robledo, S., Osorio, G. A., Yathe, L., González, D. & Taborda, G. (2016). Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el análisis de referencias. Nova, 14(25), 121–128. https://doi.org/10.22490/24629448.1735

Published

2021-07-21

How to Cite

Pineda Guerrero, M. S., Agudelo Aguirre, A. A., Rojas Medina, R. A., & Duque Hurtado, P. L. (2021). Value at Risk and simulation: a systematic review. ECONÓMICAS CUC, 43(1), 57–82. https://doi.org/10.17981/econcuc.43.1.2022.Econ.3

Issue

Section

Articles: Economy and Finance

Most read articles by the same author(s)