Importance of Rare Earth Elements in Modern Society and their Potential Source in Coal Ashes
Keywords:
Advanced technologies, minerals, unconventional sourcesAbstract
Introduction: Rare Earth Elements (REEs) are crucial for advanced technologies in modern society, ranging from electronics to renewable energy and defense. Their increasing demand in critical industries underscores the need for a consistent and sustainable supply. Historically extracted from REE-rich minerals such as bastnäsite and monazite, the search for alternative sources has gained prominence, among these, coal ashes stand out, produced by burning coal to generate energy, ashes contain REEs in relatively low concentrations but with significant potential due to their massive global volume. The importance of ensuring the resilience of the REE supply chain has driven research to extract these elements from coal ashes, diversifying sources and reducing reliance on specific minerals. As technologies advance and REE applications expand, the ability to recover them from unconventional sources like coal ashes could have a sustainable impact on our societies. Research into the extraction and utilization of REEs from ashes is in progress and may enhance supply security. This study highlights the global importance of finding alternative sources of REE, such as coal ash, emphasizing the need to ensure a consistent and sustainable supply of these essential elements.
Downloads
References
Alonso, E., Sherman, A. M., Wallington, T. J., Everson, M. P., Field, F. R., Roth, R. & Kirchain, R. E. (2012). Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environmental Science & Technology, 46(6), 3406–3414. https://doi.org/10.1021/es203518d
Amirshahi, S. & Jorjani, E. (2023). Preliminary Flowsheet Development for Mixed Rare Earth Elements Production from Apatite Leaching Aqueous Solution Using Biosorption and Precipitation. Minerals, 13(7), 1–15. https://doi.org/10.3390/min13070909
Akar, G., Polat, M., Galecki, G. & Ipekoglu, U. (2012). Leaching behavior of selected trace elements in coal fly ash samples from Yenikoy coal-fired power plants. Fuel processing technology, 104, 50–56. http://dx.doi.org/10.1016/j.fuproc.2012.06.026
Arrachart, G., Couturier, J., Dourdain, S., Levard, C. & Pellet-Rostaing, S. (2021). Recovery of rare earth elements (REEs) using ionic solvents. Processes, 9(7), 1–29. https://doi.org/10.3390/pr9071202
Asr, E. T., Kakaie, R., Ataei, M. & Mohammadi, M. R. T. (2019). A review of studies on sustainable development in mining life cycle. Journal of Cleaner Production, 229, 213–231. https://doi.org/10.1016/j.jclepro.2019.05.029
Balaram, V. (2023). Potential future alternative resources for rare earth elements: Opportunities and challenges. Minerals, 13(3), 1–22. https://doi.org/10.3390/min13030425
Bielowicz, B. (2020). Ash characteristics and selected critical elements (Ga, Sc, V) in coal and ash in polish deposits. Resources, 9(9), 1–30. https://doi.org/10.3390/resources9090115
Binnemans K., Jones P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A. & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22. https://doi.org/10.1016/j.jclepro.2012.12.037
Borra, C. R., Mermans, J., Blanpain, B., Pontikes, Y., Binnemans, K. & Van Gerven, T. (2016). Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. Minerals Engineering, 92, 151–159. http://dx.doi.org/10.1016/j.mineng.2016.03.002
Boudreault, R., Primeau, D., Krivanec, H., Dittrich, C. & Labrecque-Gilbert, M.-M. (2015). Processes for recovering rare earthelements and rare metals (U.S. Patent Application No. 14/386,133). USPTO. https://patentimages.storage.googleapis.com/86/67/2d/e7e0311ba7fdec/US20150104361A1.pdf
Castor, S. B. & Hedrick, J. B. (2006). Rare Earth Elements. In J. E. Kogel, N. C. Trivedi, J. M. Barker & S. T. Krukowski (Eds.), Industrial Minerals and Rocks:commodities, Markets, and Uses (7 Ed., pp. 769–792). Society for Mining, Metallurgy, and Exploration. https://doi.org/10.1002/9781119951438.eibd0664
Dardona, M., Mohanty, S. K., Allen, M. J. & Dittrich, T. M. (2023). From ash to oxides: Recovery of rare-earth elements as a step towards valorization of coal fly ash waste. Separation and Purification Technology, 314(3), 1–22. http://dx.doi.org/10.1016/j.seppur.2023.123532
Dobransky, S. (2012). Rare Earth elements and us foreign policy: the critical ascension of REEs in global politics and US national security. APSA 2012 Annual Meeting Paper, 1–45. https://americandiplomacy.web.unc.edu/2013/10/rare-earth-elements-and-u-s-foreign-policy/
Dupont, D. & Binnemans, K. (2015). Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y 2 O 3: Eu 3+ from lamp phosphor waste. Green Chemistry, 17(2), 856–868. https://doi.org/10.1039/C4GC02107J
El Ouardi, Y., Virolainen, S., Mouele, E. S. M., Laatikainen, M., Repo, E. & Laatikainen, K. (2023). The recent progress of ion exchange for the separation of rare earths from secondary resources–A review. Hydrometallurgy, 218, 1–20. https://doi.org/10.1016/j.hydromet.2023.106047
Eterigho-Ikelegbe, O., Harrar, H. & Bada, S. (2021). Rare earth elements from coal and coal discard–A review. Minerals Engineering, 173, 1–17. https://doi.org/10.1016/j.mineng.2021.107187
Franus, W., Wiatros-Motyka, M. M. & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22, 9464–9474. https://doi.org/10.1007/s11356-015-4111-9
Gao, W., Wen, D., Ho, J.-C. & Qu, Y. (2019). Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: a review for recent progress. Materials Today Chemistry, 12, 266–281. https://doi.org/10.1016/j.mtchem.2019.02.002
Gergoric, M., Barrier, A. & Retegan, T. (2019). Recovery of rare-earth elements from neodymium magnet waste using glycolic, maleic, and ascorbic acids followed by solvent extraction. Journal of Sustainable Metallurgy, 5, 85–96. https://doi.org/10.1007/s40831-018-0200-6
Goodenough, K. M., Wall, F. & Merriman, D. (2018). The rare earth elements: demand, global resources, and challenges for resourcing future generations. Natural Resources Research, 27, 201–216. https://doi.org/10.1007/s11053-017-9336-5
Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., Friedlander, E., Henly, C., Jun, C., Nassar, N. T., Schechner, D., Warren, S., Yang, M.-Y. & Zhu, C. (2012). Methodology of metal criticality determination. Environmental science & technology, 46(2), 1063–1070. https://doi.org/10.1021/es203534z
Gupta, C. K. & Krishnamurthy, N. (1992). Extractive metallurgy of rare earths. International materials reviews, 37(1), 197–248. https://doi.org/10.1179/imr.1992.37.1.197
Han, K. N. (2020). Characteristics of precipitation of rare earth elements with various precipitants. Minerals, 10(2), 1–13. https://doi.org/10.3390/min10020178
Hiskey, J. B. & Copp, R. G. (2018). Solvent extraction of yttrium and rare earth elements from copper pregnant leach solutions using Primene JM-T. Minerals Engineering, 125, 265–270. https://doi.org/10.1016/j.mineng.2018.06.014
Humphreys, D. (2014). The mining industry and the supply of critical minerals. In G. Gunn, Critical metals handbook (pp. 20–40). John Wiley & Sons. http://dx.doi.org/10.1002/9781118755341.ch2
Islam, M. M., Sohag, K., Hammoudeh, S., Mariev, O. & Samargandi, N. (2022). Minerals import demands and clean energy transitions: A disaggregated analysis. Energy Economics, 113(C), 1–25. https://doi.org/10.1016/j.eneco.2022.106205
Islam, S. Z., Wagh, P., Jenkins, J. E., Zarzana, C., Foster, M. & Bhave, R. (2022). Process Scale-Up of an Energy-Efficient Membrane Solvent Extraction Process for Rare Earth Recycling from Electronic Wastes. Advanced Engineering Materials, 24(12), 1–28. https://doi.org/10.1002/adem.202200390
Jha, M. K., Kumari, A., Panda, R., Kumar, J. R., Yoo, K. & Lee, J. Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 165, 77–101. http://doi.org/10.1016/j.hydromet.2016.01.003
Jyothi, R. K., Thenepalli, T., Ahn, J. W., Parhi, P. K., Chung, K. W. & Lee, J. Y. (2020). Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. Journal of Cleaner Production, 267, 1–26. https://doi.org/10.1016/j.jclepro.2020.122048
Kaim, V., Rintala, J. & He, C. (2022). Selective recovery of rare earth elements from e-waste via ionic liquid extraction: A review. Separation and Purification Technology, 306(Part B), 1–13. https://doi.org/10.1016/j.seppur.2022.122699
Ketris, M. Á. & Yudovich, Y. E. (2009). Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International journal of coal geology, 78(2), 135–148. https://doi.org/10.1016/j.coal.2009.01.002
Kim, J. S., Choi, N. C. & Jo, H. Y. (2021). Selective Leaching Trace Elements from Bauxite Residue (Red Mud) without and with Adding Solid NH4Cl Using Microwave Heating. Metals, 11(8), 1–15. https://doi.org/10.3390/met11081281
Liu, T., Hower, J. C. & Huang, C.-H. (2023). Recovery of Rare Earth Elements from Coal Fly Ash with Betainium Bis (trifluoromethylsulfonyl) imide: Different Ash Types and Broad Elemental Survey. Minerals, 13(7), 1–16. https://doi.org/10.3390/min13070952
Massari, S. & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43. https://doi.org/10.1016/j.resourpol.2012.07.001
Molina-Calderón, L., Basualto-Flores, C., Paredes-García, V. & Venegas-Yazigi, D. (2022). Advances of magnetic nanohydrometallurgy using superparamagnetic nanomaterials as rare earth ions adsorbents: A grand opportunity for sustainable rare earth recovery. Separation and Purification Technology, 299, 1–28. https://doi.org/10.1016/j.seppur.2022.121708
Pagano, G. (2016). Rare earth elements in human and environmental health. At the crossroads between toxicity and safety. Jenny Stanford Publishing. https://doi.org/10.1201/9781315364735
Pan, J., Hassas, B. V., Rezaee, M., Zhou, C. & Pisupati, S. V. (2021). Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes. Journal of Cleaner Production, 284, 1–36. https://doi.org/10.1016/j.jclepro.2020.124725
Pathapati, S. V. S. H., Free, M. L. & Sarswat, P. K. (2023). A Comparative Study on Recent Developments for Individual Rare Earth Elements Separation. Processes, 11(7), 1–28. https://doi.org/10.3390/pr11072070
Proelss, J., Schweizer, D. & Seiler, V. (2020). The economic importance of rare earth elements volatility forecasts. International Review of Financial Analysis, 71, 1–45. https://doi.org/10.1016/j.irfa.2019.01.010
Rao, K. A. & Sreenivas, T. (2019). Recovery of rare earth elements from coal fly ash: a review. In Abhilash & A. Akcil, Critical and rare earth elements: Recovery from secondary resources (pp. 343–364). CRC Press. http://dx.doi.org/10.1201/9780429023545-18
Rudnick, R. L. & Gao, S. (2003). Composition of the continental crust. In Turekian, K. K, Holland HD(eds), Treatise on Geochemistry (Vol. 3, pp. 1–64). Elsevier. http://dx.doi.org/10.1016/b0-08-043751-6/03016-4
Seliger, G. (2012). Sustainable manufacturing for global value creation. In G. Seliger, Sustainable manufacturing: Shaping global value creation (pp. 3–8). Springer. https://doi.org/10.1007/978-3-642-27290-5
Seredin, V. V. & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. https://doi.org/10.1016/j.coal.2011.11.001
Silva, L. F., Crissien Borrero, T. J., Tutikian, B. & Sampaio, C. H. (2020). Rare Earth Elements and carbon nanotubes in coal mine around spontaneous combustions. Journal of Cleaner Production, 253, 1–28. http://dx.doi.org/10.1016/j.jclepro.2020.120068
Smith, Y. R., Bhattacharyya, D., Willhard, T. & Misra, M. (2016). Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chemical Engineering Journal, 296, 102–111. http://dx.doi.org/10.1016/j.cej.2016.03.082
Stauffer, P. H., Hendley II, J. W., Haxel, G. B., Boore, S. & Mayfield, S. (2002). Rare earth elements: critical resources for high technology. US Geological Survey, 87(2), 1–4. https://pubs.usgs.gov/fs/2002/fs087-02/
Stuckman, M. Y., Lopano, C. L. & Granite, E. J. (2018). Distribution and speciation of rare earth elements in coal combustion by-products via synchrotron microscopy and spectroscopy. International Journal of Coal Geology, 195, 125–138. https://doi.org/10.1016/j.coal.2018.06.001
Swain, B. (2023). Challenges and opportunities for sustainable valorization of rare earth metals from anthropogenic waste. Reviews in Environmental Science and Bio/Technology, 22(1), 133–173. https://doi.org/10.1007/s11157-023-09647-2
Swain, N. & Mishra, S. (2019). A review on the recovery and separation of rare earths and transition metals from secondary resources. Journal of cleaner production, 220, 884–898. https://doi.org/10.1016/j.jclepro.2019.02.094
Thompson, R. L., Bank, T., Montross, S., Roth, E., Howard, B., Verba, C. & Granite, E. (2018). Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 143, 1–11. https://doi.org/10.1016/j.sab.2018.02.009
Wen, Z., Zhou, C., Pan, J., Cao, S., Hu, T., Ji, W. & Nie, T. (2022). Recovery of rare-earth elements from coal fly ash via enhanced leaching. International Journal of Coal Preparation and Utilization, 42(7), 2041–2055. https://doi.org/10.1016/j.chemosphere.2020.126112
Zhang, W., Noble, A., Yang, X. & Honaker, R. (2020). A comprehensive review of rare earth elements recovery from coal-related materials. Minerals, 10(5), 1–28. https://doi.org/10.3390/min10050451

Published
How to Cite
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.