A review of the application of low-cost adsorbents as an alternative method for biosorption of contaminants present in water
DOI:
https://doi.org/10.17981/ladee.04.02.2023.1Keywords:
Wasterwater Treatment, contaminants, biosorbents, adsorption processAbstract
Introduction: When using conventional methods to remove contaminants present in water, it generates limitations, such as low efficiency values, and the need for a large operating area added to a high operational cost. As a result, the scientific community has focused its efforts on improving existing removal methods, such as adsorption more focused on the use of biosorbents. These are generally zero-cost waste materials in nature that have a large volume, an example is those generated in agriculture, such as rice husks, peanut husks, cassava husks, and fruit husks, among others. Methodology: This study sought to carry out an extensive review through a broad database, providing biosorbents already produced and used to remove various contaminants. For certain contaminants such as dyes and some heavy metals, dead or live biomasses present promising removal results. The great advantage is that these materials generally present insufficient management, causing several environmental problems. Once used as biosorbents, they solve the problem of bioaccumulation and support the treatment of effluents, making the process sustainable. Results: The most satisfactory results were obtained in the removal of heavy metals, while the use of microbial biomass presented a lower performance, being more dependent on the control of nutrients and other parameters involving the process. The removal of other organic compounds presented greater complexity since they presented functional groups of varying ionic nature, which influence the interaction have the functional groups present on the surface of the biosorbent. Conclusions: Finally, Biosorption presents several advantages such as its cost-benefit, high effectiveness, easy implementation, and how fibrous residues are used, the active sites are freer to adsorb substances and chemicals. Added to this, it enables the use of waste which supports management, reducing environmental pollution resulting from incorrect disposal, making the process sustainable globally.
Downloads
References
Ali, M. M. & Bhakta, J. N. (2020). Biosorption of zinc from aqueous solution using leaves of Corchorus olitorius as a low-cost biosorbent. Water Environment Research, 92(6), 821–828. https://doi.org/10.1002/wer.1274
Ali Redha, A. (2020). Removal of heavy metals from aqueous media by biosorption. Arab Journal of Basic and Applied Sciences, 27(1), 183–193. https://doi.org/10.1080/25765299.2020.1756177
Alothman, Z. A., Bahkali, A. H., Khiyami, M. A., Alfadul, S. M., Wabaidur, S. M., Alam, M. & Alfarhan, B. Z. (2020). Low cost biosorbents from fungi for heavy metals removal from wastewater. Separation Science and Technology (Philadelphia), 55(10), 1766–1775. https://doi.org/10.1080/01496395.2019.1608242
Aryal, M. (2021). A comprehensive study on the bacterial biosorption of heavy metals: Materials, performances, mechanisms, and mathematical modellings. Reviews in Chemical Engineering, 37(6), 715–754. https://doi.org/10.1515/revce-2019-0016
Ayangbenro, A. S. & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 1–16. https://doi.org/10.3390/ijerph14010094
Azimi, A., Azari, A., Rezakazemi, M. & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010
Blagojev, N., Kukić, D., Vasić, V., Šćiban, M., Prodanović, J. & Bera, O. (2019). A new approach for modelling and optimization of Cu(II) biosorption from aqueous solutions using sugar beet shreds in a fixed-bed column. Journal of Hazardous Materials, 363, 366–375. https://doi.org/10.1016/j.jhazmat.2018.09.068
Bó, L. G., Almeida, R. M., Cardoso, C. M. M., Zavarize, D. G., Brum, S. S. & Mendonça, A. R. V. (2019). Acetylsalicylic acid biosorption onto fungal-bacterial biofilm supported on activated carbons: an investigation via batch and fixed-bed experiments. Environmental Science and Pollution Research, 26(28), 28962–28976. https://doi.org/10.1007/s11356-019-06075-0
Bozorginia, S., Jaafari, J., Taghavi, K., Ashrafi, S. D., Roohbakhsh, E. & Naghipour, D. (2023). Biosorption of ceftriaxone antibiotic by Pseudomonas putida from aqueous solutions. International Journal of Environmental Analytical Chemistry, 103(9), 2067–2081. https://doi.org/10.1080/03067319.2021.1887858
Chen, S. H., Cheow, Y. L., Ng, S. L. & Ting, A. S. Y. (2020). Bioaccumulation and Biosorption Activities of Indoor Metal-Tolerant Penicillium simplicissimum for Removal of Toxic Metals. International Journal of Environmental Research, 14(2), 235–242. https://doi.org/10.1007/s41742-020-00253-6
Choudhary, M., Kumar, R. & Neogi, S. (2020). Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. Journal of Hazardous Materials, 392, 122441. https://doi.org/10.1016/j.jhazmat.2020.122441
Choudhary, S., Rani, M., Singh, R. K., Patra, A., Devika, S. & Prasad, S. K. (2019). Impact of fluoride on agriculture: A review on it’s sources, toxicity in plants and mitigation strategies. International Journal of Chemical Studies, 7(2), 1675–1680. https://www.chemijournal.com/archives/?year=2019&vol=7&issue=2&ArticleId=5396&si=false
Cui, D., Tan, C., Deng, H., Gu, X., Pi, S., Chen, T., Zhou, L. & Li, A. (2020). Biosorption Mechanism of Aqueous Pb2+, Cd2+, and Ni2+Ions on Extracellular Polymeric Substances (EPS). Archaea, 1–9. https://doi.org/10.1155/2020/8891543
Dada, A. O., Adekola, F. A., Odebunmi, E. O., Dada, F. E., Bello, O. M., Akinyemi, B. A., … Umukoro, O. G. (2020). Sustainable and low-cost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies. International Journal of Phytoremediation, (14), 1524–1537. https://doi.org/10.1080/15226514.2020.1785389
Das, S., Dash, H. R. & Chakraborty, J. (2016). Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Applied Microbiology and Biotechnology, 100(7), 2967–2984. https://doi.org/10.1007/s00253-016-7364-4
de Freitas, G. R., Vieira, M. G. & da Silva, M. G. (2019). Fixed bed biosorption of silver and investigation of functional groups on acidified biosorbent from algae biomass. Environmental Science and Pollution Research, 26(36), 36354–36366. https://doi.org/10.1007/s11356-019-06731-5
de Sá, A., Abreu, A. S., Moura, I. & Machado, A. V. (2017). Polymeric materials for metal sorption from hydric resources. Water Purification. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804300-4.00008-3
Deniz, F. & Tezel, E. (2020). An Effectual Biosorbent Substance for Removal of Manganese Ions from Aquatic Environment: A Promising Environmental Remediation Study with Activated Coastal Waste of Zostera marina Plant. BioMed Research International, 1–8. https://doi.org/10.1155/2020/7806154
Dinh, V. P., Xuan, T. D., Hung, N. Q., Luu, T. T., Do, T.-T.-T., Nguyen, T. D., Nguyen, V.-D., Anh, T. T K. & Tran, N. Q. (2021). Primary biosorption mechanism of lead (II) and cadmium (II) cations from aqueous solution by pomelo (Citrus maxima) fruit peels. Environmental Science and Pollution Research, 28(45), 63504–63515. https://doi.org/10.1007/s11356-020-10176-6
Elovich, S. Y. & Larionov, O. G. (1962). Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 11(2), 198–203. https://doi.org/10.1007/BF00908017
Emami-Moghaddam, S. A., Harun, R., Mokhtar, M. N. & Zakaria, R. (2018). Potential of Zeolite and Algae in Biomass Immobilization. BioMed Research International, 1–16. https://doi.org/10.1155/2018/6563196
Escudero, L. B., Vanni, G., Duarte, F. A., Segger, T. & Dotto, G. L. (2018). Biosorption of silver from aqueous solutions using wine industry wastes. Chemical Engineering Communications, 205(3), 325–337. https://doi.org/10.1080/00986445.2017.1387856
Ezekoye, O. M., Akpomie, K. G., Eze, S. I., Chukwujindu, C. N., Ani, J. U. & Ujam, O. T. (2020). Biosorptive interaction of alkaline modified Dialium guineense seed powders with ciprofloxacin in contaminated solution: central composite, kinetics, isotherm, thermodynamics, and desorption. International Journal of Phytoremediation, 22(10), 1028–1037. https://doi.org/10.1080/15226514.2020.1725869
Fathollahi, A., Coupe, S. J., El-Sheikh, A. H. & Sañudo-Fontaneda, L. A. (2020). The biosorption of mercury by permeable pavement biofilms in stormwater attenuation. Science of the Total Environment, 741, 1–12. https://doi.org/10.1016/j.scitotenv.2020.140411
Fomina, M. & Gadd, G. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14. https://doi.org/10.1016/j.biortech.2013.12.102
Franco, D. S., Georgin, J., Lima, E. C. & Silva, L. F. (2022). Journal of Water Process Engineering Advances made in removing paraquat herbicide by adsorption technology: A review. Journal of Water Process Engineering, 49, 102988. https://doi.org/10.1016/j.jwpe.2022.102988
Franco, D. S., Georgin, J., Ramos, C. G., Eljaiek, S. M., Romero, D., de Oliveira, A. H., Alasia, D. & Meili, L. (2023). The Synthesis and Evaluation of Porous Carbon Material from Corozo Fruit (Bactris guineensis) for Efficient Propranolol Hydrochloride Adsorption. Molecules, 28(13), 1–20. https://doi.org/10.3390/molecules28135232
Franco, D. S., Georgin, J., Ramos, C., Netto, M. S., Lobo, B., Jimenez, G., Lima, E. C. & Sher, F. (2023). Production of adsorbent for removal of propranolol hydrochloride: Use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. Journal of Molecular Liquids, 380, 121677. https://doi.org/10.1016/j.molliq.2023.121677
Franco, D. S., Georgin, J., Ramos, C., Netto, M. S., Ojeda, N. J., Vega, N. A., Meili, L., Lima, E. C. & Naushad, M. (2023). The production of activated biochar using Calophyllum inophyllum waste biomass and use as an adsorbent for removal of diuron from the water in batch and fixed bed column. Environmental Science and Pollution Research, 52498–52513. https://doi.org/10.1007/s11356-023-26048-8
Freundlich, H. (1907). Über die Adsorption in Lösungen. Zeitschrift Für Physikalische Chemie, 57U(1), 385–470. https://doi.org/10.1515/zpch-1907-5723
García, J., García-Galán, M. J., Day, J. W., Boopathy, R., White, J. R., Wallace, S. & Hunter, R. G. (2020). A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technology, 307, 123228–123228. https://doi.org/10.1016/j.biortech.2020.123228
Gavrilescu, M. (2020). Biomass-a resource for environmental bioremediation and bioenergy. In V. K. Gupta, H. Treichel, R. C. Kuhad & S. Rodriguez-Cout, Recent Developments in Bioenergy Research [pp. 19–63]. Elsevier. https://doi.org/10.1016/B978-0-12-819597-0.00002-7
Ge, N., Xu, J., Li, F., Peng, B. & Pan, S. (2017). Immobilization of inactivated microbial cells on magnetic Fe3O4@CTS nanoparticles for constructing a new biosorbent for removal of patulin in fruit juice. Food Control, 82, 83–90. https://doi.org/10.1016/j.foodcont.2017.06.027
Georgin, J., Franco, D. S. & Sher, F. (2023). A review of the antibiotic ofloxacin : Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chemical Engineering Research and Design, 193, 99–120. https://doi.org/10.1016/j.cherd.2023.03.025
Georgin, J., Franco, D. S., Da Boit, K., Lima, E. C. & Silva, L. (2022). A review of the toxicology presence and removal of ketoprofen through adsorption technology. Journal of Environmental Chemical Engineering, 10(3), 107798. https://doi.org/10.1016/j.jece.2022.107798
Georgin, J., Franco, D. S., Netto, M. S., Allasia, D., Oliveira, M. L. & Dotto, G. L. (2020). Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environmental Science and Pollution Research, 27(17), 20831–20843. https://doi.org/10.1007/s11356-020-08496-8
Georgin, J., Franco, D. S., Sher, F., Stracke, D., Franco, P. & Sher, F. (2023). A review of the antibiotic ofloxacin : Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chemical Engineering Research and Design, 193, 99–120. https://doi.org/10.1016/j.cherd.2023.03.025
Georgin, J., Franco, D. S., Netto, M. S., Gama, B. M., Fernandes, D. P., Sepúlveda, P., Silva, L. & Meili, L. (2022). Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 654, 1–17. https://doi.org/10.1016/j.colsurfa.2022.129900
Georgin, J., Franco, D. S., Netto, M. S., Manzar, M. S., Zubair, M., Meili, L., Piccili, D. G. & Silva, L. F. (2022). Adsorption of the First-Line Covid Treatment Analgesic onto Activated Carbon from Residual Pods of Erythrina Speciosa. Environmental Management, 71, 795–808. https://doi.org/10.1007/s00267-022-01716-6
Giese, E. C. (2020). Biosorption as green technology for the recovery and separation of rare earth elements. World Journal of Microbiology and Biotechnology, 36(4), 1–11. https://doi.org/10.1007/s11274-020-02821-6
Giese, E. C., Dekker, R. F. & Barbosa-Dekker, A. M. (2019). Biosorption of lanthanum and samarium by viable and autoclaved mycelium of Botryosphaeria rhodina MAMB-05. Biotechnology Progress, 35(3), 1–8. https://doi.org/10.1002/btpr.2783
Giese, E. C., Silva, D., Costa, A. F., Almeida, S. G. & Dussán, K. J. (2020). Immobilized microbial nanoparticles for biosorption. Critical Reviews in Biotechnology, 40(5), 653–666. https://doi.org/10.1080/07388551.2020.1751583
Grassi, P., Georgin, J., Franco, D. S., Sá, Í. M., Lins, P. V., Foletto, E. L., Jahn, S. L., Meili, L. & Rangabhashiyam, S. (2023). Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems. International Journal of Phytoremediation, 1–16. https://doi.org/10.1080/15226514.2023.2225615
Ho, Y. S. & Mckay, G. (1998). Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Safety and Environmental Protection, 76(2), 183–191. https://doi.org/10.1205/095758298529326
Hussein, M. H., Hamouda, R. A., Elhadary, A. M. A., Abuelmagd, M. A., Ali, S. & Rizwan, M. (2019). Characterization and chromium biosorption potential of extruded polymeric substances from Synechococcus mundulus induced by acute dose of gamma irradiation. Environmental Science and Pollution Research, 26(31), 31998–32012. https://doi.org/10.1007/s11356-019-06202-x
Inglezakis, V. J. (2007). Solubility-normalized Dubinin-Astakhov adsorption isotherm for ion-exchange systems. Microporous and Mesoporous Materials, 103(1–3), 72–81. https://doi.org/10.1016/j.micromeso.2007.01.039
Izatt, R. M., Izatt, S. R., Izatt, N. E., Krakowiak, K. E., Bruening, R. L. & Navarro, L. (2015). Industrial applications of molecular recognition technology to separations of platinum group metals and selective removal of metal impurities from process streams. Green Chemistry, 17(4), 2236–2245. https://doi.org/10.1039/C4GC02188F
Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K. & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management, 217, 56–70. https://doi.org/10.1016/j.jenvman.2018.03.077
Jiang, M., Qi, Y., Liu, H. & Chen, Y. (2018). The Role of Nanomaterials and Nanotechnologies in Wastewater Treatment: a Bibliometric Analysis. Nanoscale Research Letters, 1–13. https://doi.org/10.1186/s11671-018-2649-4
Kalak, T., Dudczak-Hałabuda, J., Tachibana, Y. & Cierpiszewski, R. (2020). Effective use of elderberry (Sambucus nigra) pomace in biosorption processes of Fe(III) ions. Chemosphere, 246, 1–8. https://doi.org/10.1016/j.chemosphere.2019.125744
Kanamarlapudi, S. L. R. K., Chintalpudi, V. K. & Muddada, S. (2018). Application of Biosorption for Removal of Heavy Metals from Wastewater. In J. Derco & B. Vrana (eds.), Biosorption [pp. 69–116]. IntechOpen. https://doi.org/10.5772/intechopen.77315
Kulkarni, R. M., Vidya Shetty, K. & Srinikethan, G. (2019). Kinetic and equilibrium modeling of biosorption of nickel (II) and cadmium (II) on brewery sludge. Water Science and Technology, 79(5), 888–894. https://doi.org/10.2166/wst.2019.090
Lagergren, S. Y. (1907). Zur Theorie der sogenannten Adsorption. Zeitschrift Für Chemie Und Industrie Der Kolloide, 2(1), 1–15. https://doi.org/10.1007/BF01501332
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004
Lebron, Y. A., Moreira, V. R. & de Souza, L. V. (2021). Biosorption of methylene blue and eriochrome black T onto the brown macroalgae Fucus vesiculosus: equilibrium, kinetics, thermodynamics and optimization. Environmental Technology, 42(2), 279–297. https://doi.org/10.1080/09593330.2019.1626914
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001
Li, D., Li, R., Ding, Z., Ruan, X., Luo, J., Chen, J., Zheng, J. & Tang, J. (2020). Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. Chemosphere, 241, 125039. https://doi.org/10.1016/j.chemosphere.2019.125039
Liu, T., Hou, J. H., Wang, J. B., Wang, W., Wang, X. Y. & Wu, J. L. (2018). Biosorption of heavy metals from aqueous solution by the novel biosorbent Pectobacterium sp. ND2. Environmental Progress and Sustainable Energy, 37(3), 968–974. https://doi.org/10.1002/ep.12757
Liu, L., Liu, J., Liu, X., Dai, C., Zhang, Z., Song, W. & Chu, Y. (2019). Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. Journal of Environmental Radioactivity, 203, 117–124. https://doi.org/10.1016/j.jenvrad.2019.03.008
Manikam, M. K., Halim, A. A., Hanafiah, M. M. & Krishnamoorthy, R. R. (2019). Removal of ammonia nitrogen, nitrate, phosphorus and cod from sewage wastewater using palm oil boiler ash composite adsorbent. Desalination and Water Treatment, 149, 23–30. https://doi.org/10.5004/dwt.2019.23842
Moghazy, R. M., Labena, A. & Husien, S. (2019). Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): Full factorial design, equilibrium, and kinetic studies. International Journal of Biological Macromolecules, 134, 330–343. https://doi.org/10.1016/j.ijbiomac.2019.04.207
Mustapha, M. U. & Halimoon, N. (2015). Microorganisms and Biosorption of Heavy Metals in the Environment: A Review Paper. Journal of Microbial & Biochemical Technology, 07(05), 253–256. https://doi.org/10.4172/1948-5948.1000219
Narayanan, I., Kumar, P. S., Franco, D. S., Georgin, J. & Meili, L. (2023). Insight into the biosorptive removal mechanisms of hexavalent chromium using the red macroalgae Gelidium sp. Biomass Conversion and Biorefinery, 1–15. https://doi.org/10.1007/s13399-023-04390-8
Nishikawa, E., da Silva, M. G. & Vieira, M. G. (2018). Cadmium biosorption by alginate extraction waste and process overview in Life Cycle Assessment context. Journal of Cleaner Production, 178, 166–175. https://doi.org/10.1016/j.jclepro.2018.01.025
Nwidi, I. & Agunwamba, J. (2016). Comparative Analysis of Some Existing Kinetic Models With Proposed Models in the Biosorption of Three Heavy Metals in a Flow-Batch Reactor Using Five Selected Micro-Organisms. Nigerian Journal of Technology, 35(3), 1–5. https://doi.org/10.4314/njt.v35i3.29
Ojima, Y., Kosako, S., Kihara, M., Miyoshi, N., Igarashi, K. & Azuma, M. (2019). Recovering metals from aqueous solutions by biosorption onto phosphorylated dry baker’s yeast. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-018-36306-2
Othmani, A., Kesraoui, A. & Seffen, M. (2021). Removal of Phenol from Aqueous Solution by Coupling Alternating Current with Biosorption. Environmental Science and Engineering, 803–807. https://doi.org/10.1007/978-3-030-51210-1_126
Páez-Vélez, C., Rivas, R. E. & Dussán, J. (2019). Enhanced gold biosorption of Lysinibacillus sphaericus CBAM5 by encapsulation of bacteria in an alginate matrix. Metals, 9(8), 1–10. https://doi.org/10.3390/met9080818
Pan, H.-W., Iizuka, A. & Shibata, E. (2021). Gold recovery from dilute aqueous solution by a biosorbent derived from woody biomass. Chemical Engineering Communications, 208(12), 1711–1724. https://doi.org/10.1080/00986445.2020.1813117
Rangabhashiyam, S. & Balasubramanian, P. (2019). Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresource Technology Reports, 5, 261–279. https://doi.org/10.1016/j.biteb.2018.07.009
Rani, S., Bansal, M., Kaur, K. & Sharma, S. (2019). Biosorption of copper(II) ions using timber industry waste based biomass. Rasayan Journal of Chemistry, 12(3), 1247–1261. https://doi.org/10.31788/RJC.2019.1235171
Rasheed, A., Ghous, T., Mumtaz, S., Zafar, M. N., Akhter, K., Shabir, R., Ul-Abdin, Z. & Shafqat, S. S. (2020). Immobilization of Pseudomonas aeruginosa static biomass on eggshell powder for on-line preconcentration and determination of Cr (VI). Open Chemistry, 18(1), 303–313. https://doi.org/10.1515/chem-2020-0031
Rehman, R., Farooq, S. & Mahmud, T. (2018). Use of Agro-waste Musa acuminata and Solanum tuberosum peels for Economical Sorptive Removal of Emerald Green dye in Ecofriendly way. Journal of Cleaner Production, 206, 1–17. https://doi.org/10.1016/j.jclepro.2018.09.226
Saha, S., Zubair, M., Khosa, M. A., Song, S. & Ullah, A. (2019). Keratin and Chitosan Biosorbents for Wastewater Treatment: A Review. Journal of Polymers and the Environment, 27(7), 1389–1403. https://doi.org/10.1007/s10924-019-01439-6
Salman, M., Athar, M. & Farooq, U. (2015). Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials. Reviews in Environmental Science and Biotechnology, 14(2), 211–228. https://doi.org/10.1007/s11157-015-9362-x
Sellaoui, L., Bouzidi, M., Franco, D. S., Alshammari, A. S., Gandouzi, M., Georgin, J., Mohamed, N. B. H., Erto, A. & Badawi, M. (2023). Exploitation of Bauhinia forficata residual fruit powder for the adsorption of cationic dyes. Chemical Engineering Journal, 456, 141033. https://doi.org/10.1016/j.cej.2022.141033
Selvakumar, A. & Rangabhashiyam, S. (2019). Biosorption of Rhodamine B onto novel biosorbents from Kappaphycus alvarezii, Gracilaria salicornia and Gracilaria edulis. Environmental Pollution, 255, 113291. https://doi.org/10.1016/j.envpol.2019.113291
Silva, A., Coimbra, R. N., Escapa, C., Figueiredo, S. A., Freitas, O. M. & Otero, M. (2020). Green microalgae scenedesmus obliquus utilization for the adsorptive removal of nonsteroidal anti-inflammatory drugs (NSAIDs) from water samples. International Journal of Environmental Research and Public Health, 17(10), 1–24. https://doi.org/10.3390/ijerph17103707
Singh, S., Kumar, V., Datta, S., Dhanjal, D. S., Sharma, K., Samuel, J. & Singh, J. (2020). Current advancement and future prospect of biosorbents for bioremediation. Science of the Total Environment, 709, 135895. https://doi.org/10.1016/j.scitotenv.2019.135895
Sintakindi, A. & Ankamwar, B. (2021). Fungal biosorption as an alternative for the treatment of dyes in waste waters: a review. Environmental Technology Reviews, 10(1), 26–43. https://doi.org/10.1080/21622515.2020.1869322
Sun, W., Sun, W. & Wang, Y. (2019). Biosorption of Direct Fast Scarlet 4BS from aqueous solution using the green-tide-causing marine algae Enteromorpha prolifera. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 223, 117347. https://doi.org/10.1016/j.saa.2019.117347
Sunsandee, N., Ramakul, P., Phatanasri, S. & Pancharoen, U. (2020). Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf: Kinetic and equilibrium studies. Biotechnology Reports, 27, e00488. https://doi.org/10.1016/j.btre.2020.e00488
Tan, L., Dong, H., Liu, X., He, J., Xu, H. & Xie, J. (2017). Mechanism of palladium(II) biosorption by: Providencia vermicola. RSC Advances, 7(12), 7060–7072. https://doi.org/10.1039/c6ra27589c
Temkin, M. & Pyzhev, V. (1939). Kinetics of the synthesis of ammonia on promoted iron catalysts. Journal of Physical Chemistry, 13, 851–867.
Torres, E. (2020). Biosorption: A review of the latest advances. Processes, 8(12), 1–23. https://doi.org/10.3390/pr8121584
Tran, N. H., Hoang, L., Nghiem, L. D., Nguyen, H., Ngo, H. H., Guo, W., Trinh, Q. T., Mai, N. H., Chen, H., Duc, N. D. & Gin, K. Y.-H. (2019). Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam. Science of the Total Environment, 692, 157–174. https://doi.org/10.1016/j.scitotenv.2019.07.092
Trojanowicz, M. (2020). Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation. Science of the Total Environment, 718(68), 134425. https://doi.org/10.1016/j.scitotenv.2019.134425
Turolla, A., Cattaneo, M., Marazzi, F., Mezzanotte, V. & Antonelli, M. (2018). Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading. Chemosphere, 191, 761–769. https://doi.org/10.1016/j.chemosphere.2017.10.099
Vasilieva, S. G., Lobakova, E. S., Lukyanov, A. A. & Solovchenko, A. E. (2016). Immobilized microalgae in biotechnology. Moscow University Biological Sciences Bulletin, 71(3), 170–176. https://doi.org/10.3103/S0096392516030135
Velkova, Z., Kirova, G., Stoytcheva, M., Kostadinova, S., Todorova, K. & Gochev, V. (2018). Immobilized microbial biosorbents for heavy metals removal. Engineering in Life Sciences, 18(12), 871–881. https://doi.org/10.1002/elsc.201800017
Vidyashankar, S. & Ravishankar, G. A. (2016). Algae-based bioremediation: Bioproducts and biofuels for biobusiness. In M. N. V. Prasad, Bioremediation and Bioeconomy [pp. 457–493]. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802830-8.00018-6
Vieira, Y., Juliana, M. N., Georgin, J., Oliveira, M. L. S., Pinto, D. & Dotto, G. L. (2022). An overview of forest residues as promising low-cost adsorbents. Gondwana Research, 110, 393–420. https://doi.org/10.1016/j.gr.2021.06.018
Villen-Guzman, M., Gutierrez-Pinilla, D., Gomez-Lahoz, C., Vereda-Alonso, C., Rodriguez-Maroto, J. M. & Arhoun, B. (2019). Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. Environmental Research, 179(B), 108849. https://doi.org/10.1016/j.envres.2019.108849
Wahlang, B. (2018). Exposure to persistent organic pollutants: Impact on women’s health. Reviews on Environmental Health, 33(4), 331–348. https://doi.org/10.1515/reveh-2018-0018
Wang, Y. & Huang, K. (2020). Biosorption of tungstate onto garlic peel loaded with Fe(III), Ce(III), and Ti(IV). Environmental Science and Pollution Research, 27(27), 33692–33702. https://doi.org/10.1007/s11356-020-09309-8
Wang, L., Xiao, H., He, N., Sun, D. & Duan, S. (2019). Biosorption and Biodegradation of the Environmental Hormone Nonylphenol By Four Marine Microalgae. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-41808-8
Wang, N., Qiu, Y., Xiao, T., Wang, J., Chen, Y., Xu, X., Kan, Z., Fan, L. & Yu, H. (2019). Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application. Journal of Hazardous Materials, 373, 39–49. https://doi.org/10.1016/j.jhazmat.2019.03.056
Wang, X., Xia, K., Yang, X. & Tang, C. (2019). Growth strategy of microbes on mixed carbon sources. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-09261-3
Wernke, G., Fagundes-Klen, M. R., Vieira, M. F., Suzaki, P. Y., de Souza, H. K., Shimabuku, Q. L. & Bergamasco, R. (2020). Mathematical modelling applied to the rate-limiting mass transfer step determination of a herbicide biosorption onto fixed-bed columns. Environmental Technology, 41(5), 638–648. https://doi.org/10.1080/09593330.2018.1508252
Xie, J., Feng, N., Wang, R., Guo, Z., Dong, H., Cui, H., Wu, H., Qiu, G. & Liu, X. (2020). A Reusable Biosorbent Using Ca-Alginate Immobilized Providencia vermicola for Pd(II) Recovery from Acidic Solution. Water, Air, and Soil Pollution, 231(2), 1–10. https://doi.org/10.1007/s11270-020-4399-z
Xu, S., Xing, Y., Liu, S., Hao, X., Chen, W. & Huang, Q. (2020). Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China. Chemosphere, 240, 124893. https://doi.org/10.1016/j.chemosphere.2019.124893
Yang, T., Chen, M. L. & Wang, J. H. (2015). Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC - Trends in Analytical Chemistry, 66, 90–102. https://doi.org/10.1016/j.trac.2014.11.016
Yu, D. & Xu, C. (2017). Mapping research on carbon emissions trading: a co-citation analysis. Renewable and Sustainable Energy Reviews, 74, 1314–1322. https://doi.org/10.1016/j.rser.2016.11.144
Zanoni, M. V. & Yanamaka, H. (2016). Corantes: Caracterização química, toxicológica, métodos de detecção e tratamento. Fronteiras.
Zhang, C., Ren, H. X., Zhong, C. Q. & Wu, D. (2020). Biosorption of Cr(VI) by immobilized waste biomass from polyglutamic acid production. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-60729-5

Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jordana Georgin, Lucas Meili, Dison Franco

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.