Una revisión de la aplicación de adsorbentes de bajo costo como método alternativo para la biosorción de contaminantes presentes en el agua

Autores/as

  • Jordana Georgin Universidade Federal de Santa Maria
  • Lucas Meili Universidade Federal de Alagoas
  • Dison Franco Universidade Federal de Santa Maria

DOI:

https://doi.org/10.17981/ladee.04.02.2023.1

Palabras clave:

Tratamiento de aguas residuales, contaminantes, biosorbentes, proceso de adsorción

Resumen

Introducción: El uso de métodos convencionales para eliminar contaminantes presentes en el agua genera limitaciones, como bajos valores de eficiencia y la necesidad de una gran área operativa sumado a un alto costo operativo. Como resultado, la comunidad científica ha centrado sus esfuerzos en mejorar los métodos de eliminación existentes, como la adsorción más centrada en el uso de biosorbentes. Generalmente se trata de materiales de desecho de costo cero en la naturaleza que tienen un gran volumen, un ejemplo son los generados en la agricultura, como cascarilla de arroz, cascarilla de maní, cascarilla de yuca, cascarilla de frutas, entre otros. Metodología: Este estudio buscó realizar una revisión extensa a través de una amplia base de datos, proporcionando biosorbentes ya producidos y utilizados para eliminar diversos contaminantes. Para ciertos contaminantes como los tintes y algunos metales pesados, las biomasas vivas o muertas presentan resultados de eliminación prometedores. La gran ventaja es que estos materiales generalmente presentan un manejo insuficiente, provocando varios problemas ambientales. Una vez utilizados como biosorbentes, resuelven el problema de la bioacumulación y apoyan el tratamiento de efluentes, haciendo que el proceso sea sostenible. Resultados: Los resultados más satisfactorios se obtuvieron en la eliminación de metales pesados, mientras que el uso de biomasa microbiana presentó un menor rendimiento, siendo más dependiente del control de nutrientes y otros parámetros que involucran el proceso. La eliminación de otros compuestos orgánicos presentó mayor complejidad ya que presentaban grupos funcionales de diversa naturaleza iónica, los cuales influyen en la interacción que tienen los grupos funcionales presentes en la superficie del biosorbente. Conclusiones: Finalmente, la Biosorción presenta varias ventajas como su costo-beneficio, alta efectividad, fácil implementación y como al aprovechar los residuos fibrosos los sitios activos quedan más libres para adsorber sustancias y químicos. Sumado a esto, permite el aprovechamiento de residuos que apoyan la gestión, reduciendo la contaminación ambiental resultante de una eliminación incorrecta, haciendo que el proceso sea sustentable a nivel global.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, M. M. & Bhakta, J. N. (2020). Biosorption of zinc from aqueous solution using leaves of Corchorus olitorius as a low-cost biosorbent. Water Environment Research, 92(6), 821–828. https://doi.org/10.1002/wer.1274

Ali Redha, A. (2020). Removal of heavy metals from aqueous media by biosorption. Arab Journal of Basic and Applied Sciences, 27(1), 183–193. https://doi.org/10.1080/25765299.2020.1756177

Alothman, Z. A., Bahkali, A. H., Khiyami, M. A., Alfadul, S. M., Wabaidur, S. M., Alam, M. & Alfarhan, B. Z. (2020). Low cost biosorbents from fungi for heavy metals removal from wastewater. Separation Science and Technology (Philadelphia), 55(10), 1766–1775. https://doi.org/10.1080/01496395.2019.1608242

Aryal, M. (2021). A comprehensive study on the bacterial biosorption of heavy metals: Materials, performances, mechanisms, and mathematical modellings. Reviews in Chemical Engineering, 37(6), 715–754. https://doi.org/10.1515/revce-2019-0016

Ayangbenro, A. S. & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 1–16. https://doi.org/10.3390/ijerph14010094

Azimi, A., Azari, A., Rezakazemi, M. & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010

Blagojev, N., Kukić, D., Vasić, V., Šćiban, M., Prodanović, J. & Bera, O. (2019). A new approach for modelling and optimization of Cu(II) biosorption from aqueous solutions using sugar beet shreds in a fixed-bed column. Journal of Hazardous Materials, 363, 366–375. https://doi.org/10.1016/j.jhazmat.2018.09.068

Bó, L. G., Almeida, R. M., Cardoso, C. M. M., Zavarize, D. G., Brum, S. S. & Mendonça, A. R. V. (2019). Acetylsalicylic acid biosorption onto fungal-bacterial biofilm supported on activated carbons: an investigation via batch and fixed-bed experiments. Environmental Science and Pollution Research, 26(28), 28962–28976. https://doi.org/10.1007/s11356-019-06075-0

Bozorginia, S., Jaafari, J., Taghavi, K., Ashrafi, S. D., Roohbakhsh, E. & Naghipour, D. (2023). Biosorption of ceftriaxone antibiotic by Pseudomonas putida from aqueous solutions. International Journal of Environmental Analytical Chemistry, 103(9), 2067–2081. https://doi.org/10.1080/03067319.2021.1887858

Chen, S. H., Cheow, Y. L., Ng, S. L. & Ting, A. S. Y. (2020). Bioaccumulation and Biosorption Activities of Indoor Metal-Tolerant Penicillium simplicissimum for Removal of Toxic Metals. International Journal of Environmental Research, 14(2), 235–242. https://doi.org/10.1007/s41742-020-00253-6

Choudhary, M., Kumar, R. & Neogi, S. (2020). Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. Journal of Hazardous Materials, 392, 122441. https://doi.org/10.1016/j.jhazmat.2020.122441

Choudhary, S., Rani, M., Singh, R. K., Patra, A., Devika, S. & Prasad, S. K. (2019). Impact of fluoride on agriculture: A review on it’s sources, toxicity in plants and mitigation strategies. International Journal of Chemical Studies, 7(2), 1675–1680. https://www.chemijournal.com/archives/?year=2019&vol=7&issue=2&ArticleId=5396&si=false

Cui, D., Tan, C., Deng, H., Gu, X., Pi, S., Chen, T., Zhou, L. & Li, A. (2020). Biosorption Mechanism of Aqueous Pb2+, Cd2+, and Ni2+Ions on Extracellular Polymeric Substances (EPS). Archaea, 1–9. https://doi.org/10.1155/2020/8891543

Dada, A. O., Adekola, F. A., Odebunmi, E. O., Dada, F. E., Bello, O. M., Akinyemi, B. A., … Umukoro, O. G. (2020). Sustainable and low-cost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies. International Journal of Phytoremediation, (14), 1524–1537. https://doi.org/10.1080/15226514.2020.1785389

Das, S., Dash, H. R. & Chakraborty, J. (2016). Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Applied Microbiology and Biotechnology, 100(7), 2967–2984. https://doi.org/10.1007/s00253-016-7364-4

de Freitas, G. R., Vieira, M. G. & da Silva, M. G. (2019). Fixed bed biosorption of silver and investigation of functional groups on acidified biosorbent from algae biomass. Environmental Science and Pollution Research, 26(36), 36354–36366. https://doi.org/10.1007/s11356-019-06731-5

de Sá, A., Abreu, A. S., Moura, I. & Machado, A. V. (2017). Polymeric materials for metal sorption from hydric resources. Water Purification. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804300-4.00008-3

Deniz, F. & Tezel, E. (2020). An Effectual Biosorbent Substance for Removal of Manganese Ions from Aquatic Environment: A Promising Environmental Remediation Study with Activated Coastal Waste of Zostera marina Plant. BioMed Research International, 1–8. https://doi.org/10.1155/2020/7806154

Dinh, V. P., Xuan, T. D., Hung, N. Q., Luu, T. T., Do, T.-T.-T., Nguyen, T. D., Nguyen, V.-D., Anh, T. T K. & Tran, N. Q. (2021). Primary biosorption mechanism of lead (II) and cadmium (II) cations from aqueous solution by pomelo (Citrus maxima) fruit peels. Environmental Science and Pollution Research, 28(45), 63504–63515. https://doi.org/10.1007/s11356-020-10176-6

Elovich, S. Y. & Larionov, O. G. (1962). Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 11(2), 198–203. https://doi.org/10.1007/BF00908017

Emami-Moghaddam, S. A., Harun, R., Mokhtar, M. N. & Zakaria, R. (2018). Potential of Zeolite and Algae in Biomass Immobilization. BioMed Research International, 1–16. https://doi.org/10.1155/2018/6563196

Escudero, L. B., Vanni, G., Duarte, F. A., Segger, T. & Dotto, G. L. (2018). Biosorption of silver from aqueous solutions using wine industry wastes. Chemical Engineering Communications, 205(3), 325–337. https://doi.org/10.1080/00986445.2017.1387856

Ezekoye, O. M., Akpomie, K. G., Eze, S. I., Chukwujindu, C. N., Ani, J. U. & Ujam, O. T. (2020). Biosorptive interaction of alkaline modified Dialium guineense seed powders with ciprofloxacin in contaminated solution: central composite, kinetics, isotherm, thermodynamics, and desorption. International Journal of Phytoremediation, 22(10), 1028–1037. https://doi.org/10.1080/15226514.2020.1725869

Fathollahi, A., Coupe, S. J., El-Sheikh, A. H. & Sañudo-Fontaneda, L. A. (2020). The biosorption of mercury by permeable pavement biofilms in stormwater attenuation. Science of the Total Environment, 741, 1–12. https://doi.org/10.1016/j.scitotenv.2020.140411

Fomina, M. & Gadd, G. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14. https://doi.org/10.1016/j.biortech.2013.12.102

Franco, D. S., Georgin, J., Lima, E. C. & Silva, L. F. (2022). Journal of Water Process Engineering Advances made in removing paraquat herbicide by adsorption technology: A review. Journal of Water Process Engineering, 49, 102988. https://doi.org/10.1016/j.jwpe.2022.102988

Franco, D. S., Georgin, J., Ramos, C. G., Eljaiek, S. M., Romero, D., de Oliveira, A. H., Alasia, D. & Meili, L. (2023). The Synthesis and Evaluation of Porous Carbon Material from Corozo Fruit (Bactris guineensis) for Efficient Propranolol Hydrochloride Adsorption. Molecules, 28(13), 1–20. https://doi.org/10.3390/molecules28135232

Franco, D. S., Georgin, J., Ramos, C., Netto, M. S., Lobo, B., Jimenez, G., Lima, E. C. & Sher, F. (2023). Production of adsorbent for removal of propranolol hydrochloride: Use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. Journal of Molecular Liquids, 380, 121677. https://doi.org/10.1016/j.molliq.2023.121677

Franco, D. S., Georgin, J., Ramos, C., Netto, M. S., Ojeda, N. J., Vega, N. A., Meili, L., Lima, E. C. & Naushad, M. (2023). The production of activated biochar using Calophyllum inophyllum waste biomass and use as an adsorbent for removal of diuron from the water in batch and fixed bed column. Environmental Science and Pollution Research, 52498–52513. https://doi.org/10.1007/s11356-023-26048-8

Freundlich, H. (1907). Über die Adsorption in Lösungen. Zeitschrift Für Physikalische Chemie, 57U(1), 385–470. https://doi.org/10.1515/zpch-1907-5723

García, J., García-Galán, M. J., Day, J. W., Boopathy, R., White, J. R., Wallace, S. & Hunter, R. G. (2020). A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technology, 307, 123228–123228. https://doi.org/10.1016/j.biortech.2020.123228

Gavrilescu, M. (2020). Biomass-a resource for environmental bioremediation and bioenergy. In V. K. Gupta, H. Treichel, R. C. Kuhad & S. Rodriguez-Cout, Recent Developments in Bioenergy Research [pp. 19–63]. Elsevier. https://doi.org/10.1016/B978-0-12-819597-0.00002-7

Ge, N., Xu, J., Li, F., Peng, B. & Pan, S. (2017). Immobilization of inactivated microbial cells on magnetic Fe3O4@CTS nanoparticles for constructing a new biosorbent for removal of patulin in fruit juice. Food Control, 82, 83–90. https://doi.org/10.1016/j.foodcont.2017.06.027

Georgin, J., Franco, D. S. & Sher, F. (2023). A review of the antibiotic ofloxacin : Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chemical Engineering Research and Design, 193, 99–120. https://doi.org/10.1016/j.cherd.2023.03.025

Georgin, J., Franco, D. S., Da Boit, K., Lima, E. C. & Silva, L. (2022). A review of the toxicology presence and removal of ketoprofen through adsorption technology. Journal of Environmental Chemical Engineering, 10(3), 107798. https://doi.org/10.1016/j.jece.2022.107798

Georgin, J., Franco, D. S., Netto, M. S., Allasia, D., Oliveira, M. L. & Dotto, G. L. (2020). Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environmental Science and Pollution Research, 27(17), 20831–20843. https://doi.org/10.1007/s11356-020-08496-8

Georgin, J., Franco, D. S., Sher, F., Stracke, D., Franco, P. & Sher, F. (2023). A review of the antibiotic ofloxacin : Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chemical Engineering Research and Design, 193, 99–120. https://doi.org/10.1016/j.cherd.2023.03.025

Georgin, J., Franco, D. S., Netto, M. S., Gama, B. M., Fernandes, D. P., Sepúlveda, P., Silva, L. & Meili, L. (2022). Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 654, 1–17. https://doi.org/10.1016/j.colsurfa.2022.129900

Georgin, J., Franco, D. S., Netto, M. S., Manzar, M. S., Zubair, M., Meili, L., Piccili, D. G. & Silva, L. F. (2022). Adsorption of the First-Line Covid Treatment Analgesic onto Activated Carbon from Residual Pods of Erythrina Speciosa. Environmental Management, 71, 795–808. https://doi.org/10.1007/s00267-022-01716-6

Giese, E. C. (2020). Biosorption as green technology for the recovery and separation of rare earth elements. World Journal of Microbiology and Biotechnology, 36(4), 1–11. https://doi.org/10.1007/s11274-020-02821-6

Giese, E. C., Dekker, R. F. & Barbosa-Dekker, A. M. (2019). Biosorption of lanthanum and samarium by viable and autoclaved mycelium of Botryosphaeria rhodina MAMB-05. Biotechnology Progress, 35(3), 1–8. https://doi.org/10.1002/btpr.2783

Giese, E. C., Silva, D., Costa, A. F., Almeida, S. G. & Dussán, K. J. (2020). Immobilized microbial nanoparticles for biosorption. Critical Reviews in Biotechnology, 40(5), 653–666. https://doi.org/10.1080/07388551.2020.1751583

Grassi, P., Georgin, J., Franco, D. S., Sá, Í. M., Lins, P. V., Foletto, E. L., Jahn, S. L., Meili, L. & Rangabhashiyam, S. (2023). Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems. International Journal of Phytoremediation, 1–16. https://doi.org/10.1080/15226514.2023.2225615

Ho, Y. S. & Mckay, G. (1998). Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Safety and Environmental Protection, 76(2), 183–191. https://doi.org/10.1205/095758298529326

Hussein, M. H., Hamouda, R. A., Elhadary, A. M. A., Abuelmagd, M. A., Ali, S. & Rizwan, M. (2019). Characterization and chromium biosorption potential of extruded polymeric substances from Synechococcus mundulus induced by acute dose of gamma irradiation. Environmental Science and Pollution Research, 26(31), 31998–32012. https://doi.org/10.1007/s11356-019-06202-x

Inglezakis, V. J. (2007). Solubility-normalized Dubinin-Astakhov adsorption isotherm for ion-exchange systems. Microporous and Mesoporous Materials, 103(1–3), 72–81. https://doi.org/10.1016/j.micromeso.2007.01.039

Izatt, R. M., Izatt, S. R., Izatt, N. E., Krakowiak, K. E., Bruening, R. L. & Navarro, L. (2015). Industrial applications of molecular recognition technology to separations of platinum group metals and selective removal of metal impurities from process streams. Green Chemistry, 17(4), 2236–2245. https://doi.org/10.1039/C4GC02188F

Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K. & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management, 217, 56–70. https://doi.org/10.1016/j.jenvman.2018.03.077

Jiang, M., Qi, Y., Liu, H. & Chen, Y. (2018). The Role of Nanomaterials and Nanotechnologies in Wastewater Treatment: a Bibliometric Analysis. Nanoscale Research Letters, 1–13. https://doi.org/10.1186/s11671-018-2649-4

Kalak, T., Dudczak-Hałabuda, J., Tachibana, Y. & Cierpiszewski, R. (2020). Effective use of elderberry (Sambucus nigra) pomace in biosorption processes of Fe(III) ions. Chemosphere, 246, 1–8. https://doi.org/10.1016/j.chemosphere.2019.125744

Kanamarlapudi, S. L. R. K., Chintalpudi, V. K. & Muddada, S. (2018). Application of Biosorption for Removal of Heavy Metals from Wastewater. In J. Derco & B. Vrana (eds.), Biosorption [pp. 69–116]. IntechOpen. https://doi.org/10.5772/intechopen.77315

Kulkarni, R. M., Vidya Shetty, K. & Srinikethan, G. (2019). Kinetic and equilibrium modeling of biosorption of nickel (II) and cadmium (II) on brewery sludge. Water Science and Technology, 79(5), 888–894. https://doi.org/10.2166/wst.2019.090

Lagergren, S. Y. (1907). Zur Theorie der sogenannten Adsorption. Zeitschrift Für Chemie Und Industrie Der Kolloide, 2(1), 1–15. https://doi.org/10.1007/BF01501332

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004

Lebron, Y. A., Moreira, V. R. & de Souza, L. V. (2021). Biosorption of methylene blue and eriochrome black T onto the brown macroalgae Fucus vesiculosus: equilibrium, kinetics, thermodynamics and optimization. Environmental Technology, 42(2), 279–297. https://doi.org/10.1080/09593330.2019.1626914

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001

Li, D., Li, R., Ding, Z., Ruan, X., Luo, J., Chen, J., Zheng, J. & Tang, J. (2020). Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. Chemosphere, 241, 125039. https://doi.org/10.1016/j.chemosphere.2019.125039

Liu, T., Hou, J. H., Wang, J. B., Wang, W., Wang, X. Y. & Wu, J. L. (2018). Biosorption of heavy metals from aqueous solution by the novel biosorbent Pectobacterium sp. ND2. Environmental Progress and Sustainable Energy, 37(3), 968–974. https://doi.org/10.1002/ep.12757

Liu, L., Liu, J., Liu, X., Dai, C., Zhang, Z., Song, W. & Chu, Y. (2019). Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. Journal of Environmental Radioactivity, 203, 117–124. https://doi.org/10.1016/j.jenvrad.2019.03.008

Manikam, M. K., Halim, A. A., Hanafiah, M. M. & Krishnamoorthy, R. R. (2019). Removal of ammonia nitrogen, nitrate, phosphorus and cod from sewage wastewater using palm oil boiler ash composite adsorbent. Desalination and Water Treatment, 149, 23–30. https://doi.org/10.5004/dwt.2019.23842

Moghazy, R. M., Labena, A. & Husien, S. (2019). Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): Full factorial design, equilibrium, and kinetic studies. International Journal of Biological Macromolecules, 134, 330–343. https://doi.org/10.1016/j.ijbiomac.2019.04.207

Mustapha, M. U. & Halimoon, N. (2015). Microorganisms and Biosorption of Heavy Metals in the Environment: A Review Paper. Journal of Microbial & Biochemical Technology, 07(05), 253–256. https://doi.org/10.4172/1948-5948.1000219

Narayanan, I., Kumar, P. S., Franco, D. S., Georgin, J. & Meili, L. (2023). Insight into the biosorptive removal mechanisms of hexavalent chromium using the red macroalgae Gelidium sp. Biomass Conversion and Biorefinery, 1–15. https://doi.org/10.1007/s13399-023-04390-8

Nishikawa, E., da Silva, M. G. & Vieira, M. G. (2018). Cadmium biosorption by alginate extraction waste and process overview in Life Cycle Assessment context. Journal of Cleaner Production, 178, 166–175. https://doi.org/10.1016/j.jclepro.2018.01.025

Nwidi, I. & Agunwamba, J. (2016). Comparative Analysis of Some Existing Kinetic Models With Proposed Models in the Biosorption of Three Heavy Metals in a Flow-Batch Reactor Using Five Selected Micro-Organisms. Nigerian Journal of Technology, 35(3), 1–5. https://doi.org/10.4314/njt.v35i3.29

Ojima, Y., Kosako, S., Kihara, M., Miyoshi, N., Igarashi, K. & Azuma, M. (2019). Recovering metals from aqueous solutions by biosorption onto phosphorylated dry baker’s yeast. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-018-36306-2

Othmani, A., Kesraoui, A. & Seffen, M. (2021). Removal of Phenol from Aqueous Solution by Coupling Alternating Current with Biosorption. Environmental Science and Engineering, 803–807. https://doi.org/10.1007/978-3-030-51210-1_126

Páez-Vélez, C., Rivas, R. E. & Dussán, J. (2019). Enhanced gold biosorption of Lysinibacillus sphaericus CBAM5 by encapsulation of bacteria in an alginate matrix. Metals, 9(8), 1–10. https://doi.org/10.3390/met9080818

Pan, H.-W., Iizuka, A. & Shibata, E. (2021). Gold recovery from dilute aqueous solution by a biosorbent derived from woody biomass. Chemical Engineering Communications, 208(12), 1711–1724. https://doi.org/10.1080/00986445.2020.1813117

Rangabhashiyam, S. & Balasubramanian, P. (2019). Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresource Technology Reports, 5, 261–279. https://doi.org/10.1016/j.biteb.2018.07.009

Rani, S., Bansal, M., Kaur, K. & Sharma, S. (2019). Biosorption of copper(II) ions using timber industry waste based biomass. Rasayan Journal of Chemistry, 12(3), 1247–1261. https://doi.org/10.31788/RJC.2019.1235171

Rasheed, A., Ghous, T., Mumtaz, S., Zafar, M. N., Akhter, K., Shabir, R., Ul-Abdin, Z. & Shafqat, S. S. (2020). Immobilization of Pseudomonas aeruginosa static biomass on eggshell powder for on-line preconcentration and determination of Cr (VI). Open Chemistry, 18(1), 303–313. https://doi.org/10.1515/chem-2020-0031

Rehman, R., Farooq, S. & Mahmud, T. (2018). Use of Agro-waste Musa acuminata and Solanum tuberosum peels for Economical Sorptive Removal of Emerald Green dye in Ecofriendly way. Journal of Cleaner Production, 206, 1–17. https://doi.org/10.1016/j.jclepro.2018.09.226

Saha, S., Zubair, M., Khosa, M. A., Song, S. & Ullah, A. (2019). Keratin and Chitosan Biosorbents for Wastewater Treatment: A Review. Journal of Polymers and the Environment, 27(7), 1389–1403. https://doi.org/10.1007/s10924-019-01439-6

Salman, M., Athar, M. & Farooq, U. (2015). Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials. Reviews in Environmental Science and Biotechnology, 14(2), 211–228. https://doi.org/10.1007/s11157-015-9362-x

Sellaoui, L., Bouzidi, M., Franco, D. S., Alshammari, A. S., Gandouzi, M., Georgin, J., Mohamed, N. B. H., Erto, A. & Badawi, M. (2023). Exploitation of Bauhinia forficata residual fruit powder for the adsorption of cationic dyes. Chemical Engineering Journal, 456, 141033. https://doi.org/10.1016/j.cej.2022.141033

Selvakumar, A. & Rangabhashiyam, S. (2019). Biosorption of Rhodamine B onto novel biosorbents from Kappaphycus alvarezii, Gracilaria salicornia and Gracilaria edulis. Environmental Pollution, 255, 113291. https://doi.org/10.1016/j.envpol.2019.113291

Silva, A., Coimbra, R. N., Escapa, C., Figueiredo, S. A., Freitas, O. M. & Otero, M. (2020). Green microalgae scenedesmus obliquus utilization for the adsorptive removal of nonsteroidal anti-inflammatory drugs (NSAIDs) from water samples. International Journal of Environmental Research and Public Health, 17(10), 1–24. https://doi.org/10.3390/ijerph17103707

Singh, S., Kumar, V., Datta, S., Dhanjal, D. S., Sharma, K., Samuel, J. & Singh, J. (2020). Current advancement and future prospect of biosorbents for bioremediation. Science of the Total Environment, 709, 135895. https://doi.org/10.1016/j.scitotenv.2019.135895

Sintakindi, A. & Ankamwar, B. (2021). Fungal biosorption as an alternative for the treatment of dyes in waste waters: a review. Environmental Technology Reviews, 10(1), 26–43. https://doi.org/10.1080/21622515.2020.1869322

Sun, W., Sun, W. & Wang, Y. (2019). Biosorption of Direct Fast Scarlet 4BS from aqueous solution using the green-tide-causing marine algae Enteromorpha prolifera. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 223, 117347. https://doi.org/10.1016/j.saa.2019.117347

Sunsandee, N., Ramakul, P., Phatanasri, S. & Pancharoen, U. (2020). Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf: Kinetic and equilibrium studies. Biotechnology Reports, 27, e00488. https://doi.org/10.1016/j.btre.2020.e00488

Tan, L., Dong, H., Liu, X., He, J., Xu, H. & Xie, J. (2017). Mechanism of palladium(II) biosorption by: Providencia vermicola. RSC Advances, 7(12), 7060–7072. https://doi.org/10.1039/c6ra27589c

Temkin, M. & Pyzhev, V. (1939). Kinetics of the synthesis of ammonia on promoted iron catalysts. Journal of Physical Chemistry, 13, 851–867.

Torres, E. (2020). Biosorption: A review of the latest advances. Processes, 8(12), 1–23. https://doi.org/10.3390/pr8121584

Tran, N. H., Hoang, L., Nghiem, L. D., Nguyen, H., Ngo, H. H., Guo, W., Trinh, Q. T., Mai, N. H., Chen, H., Duc, N. D. & Gin, K. Y.-H. (2019). Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam. Science of the Total Environment, 692, 157–174. https://doi.org/10.1016/j.scitotenv.2019.07.092

Trojanowicz, M. (2020). Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation. Science of the Total Environment, 718(68), 134425. https://doi.org/10.1016/j.scitotenv.2019.134425

Turolla, A., Cattaneo, M., Marazzi, F., Mezzanotte, V. & Antonelli, M. (2018). Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading. Chemosphere, 191, 761–769. https://doi.org/10.1016/j.chemosphere.2017.10.099

Vasilieva, S. G., Lobakova, E. S., Lukyanov, A. A. & Solovchenko, A. E. (2016). Immobilized microalgae in biotechnology. Moscow University Biological Sciences Bulletin, 71(3), 170–176. https://doi.org/10.3103/S0096392516030135

Velkova, Z., Kirova, G., Stoytcheva, M., Kostadinova, S., Todorova, K. & Gochev, V. (2018). Immobilized microbial biosorbents for heavy metals removal. Engineering in Life Sciences, 18(12), 871–881. https://doi.org/10.1002/elsc.201800017

Vidyashankar, S. & Ravishankar, G. A. (2016). Algae-based bioremediation: Bioproducts and biofuels for biobusiness. In M. N. V. Prasad, Bioremediation and Bioeconomy [pp. 457–493]. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802830-8.00018-6

Vieira, Y., Juliana, M. N., Georgin, J., Oliveira, M. L. S., Pinto, D. & Dotto, G. L. (2022). An overview of forest residues as promising low-cost adsorbents. Gondwana Research, 110, 393–420. https://doi.org/10.1016/j.gr.2021.06.018

Villen-Guzman, M., Gutierrez-Pinilla, D., Gomez-Lahoz, C., Vereda-Alonso, C., Rodriguez-Maroto, J. M. & Arhoun, B. (2019). Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. Environmental Research, 179(B), 108849. https://doi.org/10.1016/j.envres.2019.108849

Wahlang, B. (2018). Exposure to persistent organic pollutants: Impact on women’s health. Reviews on Environmental Health, 33(4), 331–348. https://doi.org/10.1515/reveh-2018-0018

Wang, Y. & Huang, K. (2020). Biosorption of tungstate onto garlic peel loaded with Fe(III), Ce(III), and Ti(IV). Environmental Science and Pollution Research, 27(27), 33692–33702. https://doi.org/10.1007/s11356-020-09309-8

Wang, L., Xiao, H., He, N., Sun, D. & Duan, S. (2019). Biosorption and Biodegradation of the Environmental Hormone Nonylphenol By Four Marine Microalgae. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-41808-8

Wang, N., Qiu, Y., Xiao, T., Wang, J., Chen, Y., Xu, X., Kan, Z., Fan, L. & Yu, H. (2019). Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application. Journal of Hazardous Materials, 373, 39–49. https://doi.org/10.1016/j.jhazmat.2019.03.056

Wang, X., Xia, K., Yang, X. & Tang, C. (2019). Growth strategy of microbes on mixed carbon sources. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-09261-3

Wernke, G., Fagundes-Klen, M. R., Vieira, M. F., Suzaki, P. Y., de Souza, H. K., Shimabuku, Q. L. & Bergamasco, R. (2020). Mathematical modelling applied to the rate-limiting mass transfer step determination of a herbicide biosorption onto fixed-bed columns. Environmental Technology, 41(5), 638–648. https://doi.org/10.1080/09593330.2018.1508252

Xie, J., Feng, N., Wang, R., Guo, Z., Dong, H., Cui, H., Wu, H., Qiu, G. & Liu, X. (2020). A Reusable Biosorbent Using Ca-Alginate Immobilized Providencia vermicola for Pd(II) Recovery from Acidic Solution. Water, Air, and Soil Pollution, 231(2), 1–10. https://doi.org/10.1007/s11270-020-4399-z

Xu, S., Xing, Y., Liu, S., Hao, X., Chen, W. & Huang, Q. (2020). Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China. Chemosphere, 240, 124893. https://doi.org/10.1016/j.chemosphere.2019.124893

Yang, T., Chen, M. L. & Wang, J. H. (2015). Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC - Trends in Analytical Chemistry, 66, 90–102. https://doi.org/10.1016/j.trac.2014.11.016

Yu, D. & Xu, C. (2017). Mapping research on carbon emissions trading: a co-citation analysis. Renewable and Sustainable Energy Reviews, 74, 1314–1322. https://doi.org/10.1016/j.rser.2016.11.144

Zanoni, M. V. & Yanamaka, H. (2016). Corantes: Caracterização química, toxicológica, métodos de detecção e tratamento. Fronteiras.

Zhang, C., Ren, H. X., Zhong, C. Q. & Wu, D. (2020). Biosorption of Cr(VI) by immobilized waste biomass from polyglutamic acid production. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-60729-5

Publicado

2023-12-15

Cómo citar

Georgin, J., Meili, L., & Franco, D. (2023). Una revisión de la aplicación de adsorbentes de bajo costo como método alternativo para la biosorción de contaminantes presentes en el agua. LADEe Latin American Developments in Energy Engineering, 4(2), 1–20. https://doi.org/10.17981/ladee.04.02.2023.1

Número

Sección

Artículos