Importancia de los Elementos de Tierras Raras en la Sociedad Moderna y su Potencial Fuente en las Cenizas de Carbón

Autores/as

  • Tito Jose Crissien Borrero Universidade Federal do Rio Grande do Sul (UFRGS)
  • Yasmin Mariana Stringuini Universidade de Santa Cruz do Sul (UNISC)
  • Hugo Gaspar  Hernández Palma Corporación Universitaria Iberoamericana
  • Adilson Dalmora Universidade Federal do Rio Grande do Sul (UFRGS)

Palabras clave:

Tecnologías avanzadas, minerales, fuentes no convencionales

Resumen

Introducción: Los Elementos de Tierras Raras (ETR) son vitales para tecnologías avanzadas en la sociedad actual, desde electrónica hasta energía renovable y defensa. Su demanda creciente en industrias clave subraya la necesidad de un suministro constante y sostenible. Históricamente extraídos de minerales ricos en ETR, como bastnasita y monazite, la búsqueda de fuentes alternativas ha cobrado relevancia, entre estas, las cenizas de carbón se destacan, producidas al quemar carbón para generar energía, las cenizas contienen ETR en concentraciones relativamente bajas pero con un potencial significativo debido a su gran volumen global. La importancia de garantizar la resiliencia de la cadena de suministro de ETR ha impulsado la investigación para extraer estos elementos de las cenizas de carbón, diversificando fuentes y reduciendo la dependencia de minerales específicos. A medida que las tecnologías avanzan y las aplicaciones de ETR se expanden, la capacidad de recuperarlos de fuentes no convencionales como las cenizas de carbón podría tener un impacto sostenible en nuestras sociedades. La investigación en la extracción y uso de ETR de cenizas está en desarrollo y puede aumentar la seguridad en su suministro. Este estudio destaca la importancia global de encontrar fuentes alternativas de REE, como las cenizas de carbón, enfatizando la necesidad de garantizar un suministro constante y sostenible de estos elementos esenciales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alonso, E., Sherman, A. M., Wallington, T. J., Everson, M. P., Field, F. R., Roth, R. & Kirchain, R. E. (2012). Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environmental Science & Technology, 46(6), 3406–3414. https://doi.org/10.1021/es203518d

Amirshahi, S. & Jorjani, E. (2023). Preliminary Flowsheet Development for Mixed Rare Earth Elements Production from Apatite Leaching Aqueous Solution Using Biosorption and Precipitation. Minerals, 13(7), 1–15. https://doi.org/10.3390/min13070909

Akar, G., Polat, M., Galecki, G. & Ipekoglu, U. (2012). Leaching behavior of selected trace elements in coal fly ash samples from Yenikoy coal-fired power plants. Fuel processing technology, 104, 50–56. http://dx.doi.org/10.1016/j.fuproc.2012.06.026

Arrachart, G., Couturier, J., Dourdain, S., Levard, C. & Pellet-Rostaing, S. (2021). Recovery of rare earth elements (REEs) using ionic solvents. Processes, 9(7), 1–29. https://doi.org/10.3390/pr9071202

Asr, E. T., Kakaie, R., Ataei, M. & Mohammadi, M. R. T. (2019). A review of studies on sustainable development in mining life cycle. Journal of Cleaner Production, 229, 213–231. https://doi.org/10.1016/j.jclepro.2019.05.029

Balaram, V. (2023). Potential future alternative resources for rare earth elements: Opportunities and challenges. Minerals, 13(3), 1–22. https://doi.org/10.3390/min13030425

Bielowicz, B. (2020). Ash characteristics and selected critical elements (Ga, Sc, V) in coal and ash in polish deposits. Resources, 9(9), 1–30. https://doi.org/10.3390/resources9090115

Binnemans K., Jones P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A. & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22. https://doi.org/10.1016/j.jclepro.2012.12.037

Borra, C. R., Mermans, J., Blanpain, B., Pontikes, Y., Binnemans, K. & Van Gerven, T. (2016). Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. Minerals Engineering, 92, 151–159. http://dx.doi.org/10.1016/j.mineng.2016.03.002

Boudreault, R., Primeau, D., Krivanec, H., Dittrich, C. & Labrecque-Gilbert, M.-M. (2015). Processes for recovering rare earthelements and rare metals (U.S. Patent Application No. 14/386,133). USPTO. https://patentimages.storage.googleapis.com/86/67/2d/e7e0311ba7fdec/US20150104361A1.pdf

Castor, S. B. & Hedrick, J. B. (2006). Rare Earth Elements. In J. E. Kogel, N. C. Trivedi, J. M. Barker & S. T. Krukowski (Eds.), Industrial Minerals and Rocks:commodities, Markets, and Uses (7 Ed., pp. 769–792). Society for Mining, Metallurgy, and Exploration. https://doi.org/10.1002/9781119951438.eibd0664

Dardona, M., Mohanty, S. K., Allen, M. J. & Dittrich, T. M. (2023). From ash to oxides: Recovery of rare-earth elements as a step towards valorization of coal fly ash waste. Separation and Purification Technology, 314(3), 1–22. http://dx.doi.org/10.1016/j.seppur.2023.123532

Dobransky, S. (2012). Rare Earth elements and us foreign policy: the critical ascension of REEs in global politics and US national security. APSA 2012 Annual Meeting Paper, 1–45. https://americandiplomacy.web.unc.edu/2013/10/rare-earth-elements-and-u-s-foreign-policy/

Dupont, D. & Binnemans, K. (2015). Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y 2 O 3: Eu 3+ from lamp phosphor waste. Green Chemistry, 17(2), 856–868. https://doi.org/10.1039/C4GC02107J

El Ouardi, Y., Virolainen, S., Mouele, E. S. M., Laatikainen, M., Repo, E. & Laatikainen, K. (2023). The recent progress of ion exchange for the separation of rare earths from secondary resources–A review. Hydrometallurgy, 218, 1–20. https://doi.org/10.1016/j.hydromet.2023.106047

Eterigho-Ikelegbe, O., Harrar, H. & Bada, S. (2021). Rare earth elements from coal and coal discard–A review. Minerals Engineering, 173, 1–17. https://doi.org/10.1016/j.mineng.2021.107187

Franus, W., Wiatros-Motyka, M. M. & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22, 9464–9474. https://doi.org/10.1007/s11356-015-4111-9

Gao, W., Wen, D., Ho, J.-C. & Qu, Y. (2019). Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: a review for recent progress. Materials Today Chemistry, 12, 266–281. https://doi.org/10.1016/j.mtchem.2019.02.002

Gergoric, M., Barrier, A. & Retegan, T. (2019). Recovery of rare-earth elements from neodymium magnet waste using glycolic, maleic, and ascorbic acids followed by solvent extraction. Journal of Sustainable Metallurgy, 5, 85–96. https://doi.org/10.1007/s40831-018-0200-6

Goodenough, K. M., Wall, F. & Merriman, D. (2018). The rare earth elements: demand, global resources, and challenges for resourcing future generations. Natural Resources Research, 27, 201–216. https://doi.org/10.1007/s11053-017-9336-5

Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., Friedlander, E., Henly, C., Jun, C., Nassar, N. T., Schechner, D., Warren, S., Yang, M.-Y. & Zhu, C. (2012). Methodology of metal criticality determination. Environmental science & technology, 46(2), 1063–1070. https://doi.org/10.1021/es203534z

Gupta, C. K. & Krishnamurthy, N. (1992). Extractive metallurgy of rare earths. Inter­national materials reviews, 37(1), 197–248. https://doi.org/10.1179/imr.1992.37.1.197

Han, K. N. (2020). Characteristics of precipitation of rare earth elements with various precipitants. Minerals, 10(2), 1–13. https://doi.org/10.3390/min10020178

Hiskey, J. B. & Copp, R. G. (2018). Solvent extraction of yttrium and rare earth elements from copper pregnant leach solutions using Primene JM-T. Minerals Engineering, 125, 265–270. https://doi.org/10.1016/j.mineng.2018.06.014

Humphreys, D. (2014). The mining industry and the supply of critical minerals. In G. Gunn, Critical metals handbook (pp. 20–40). John Wiley & Sons. http://dx.doi.org/10.1002/9781118755341.ch2

Islam, M. M., Sohag, K., Hammoudeh, S., Mariev, O. & Samargandi, N. (2022). Minerals import demands and clean energy transitions: A disaggregated analysis. Energy Economics, 113(C), 1–25. https://doi.org/10.1016/j.eneco.2022.106205

Islam, S. Z., Wagh, P., Jenkins, J. E., Zarzana, C., Foster, M. & Bhave, R. (2022). Process Scale-Up of an Energy-Efficient Membrane Solvent Extraction Process for Rare Earth Recycling from Electronic Wastes. Advanced Engineering Materials, 24(12), 1–28. https://doi.org/10.1002/adem.202200390

Jha, M. K., Kumari, A., Panda, R., Kumar, J. R., Yoo, K. & Lee, J. Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 165, 77–101. http://doi.org/10.1016/j.hydromet.2016.01.003

Jyothi, R. K., Thenepalli, T., Ahn, J. W., Parhi, P. K., Chung, K. W. & Lee, J. Y. (2020). Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. Journal of Cleaner Production, 267, 1–26. https://doi.org/10.1016/j.jclepro.2020.122048

Kaim, V., Rintala, J. & He, C. (2022). Selective recovery of rare earth elements from e-waste via ionic liquid extraction: A review. Separation and Purification Technology, 306(Part B), 1–13. https://doi.org/10.1016/j.seppur.2022.122699

Ketris, M. Á. & Yudovich, Y. E. (2009). Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International journal of coal geology, 78(2), 135–148. https://doi.org/10.1016/j.coal.2009.01.002

Kim, J. S., Choi, N. C. & Jo, H. Y. (2021). Selective Leaching Trace Elements from Bauxite Residue (Red Mud) without and with Adding Solid NH4Cl Using Microwave Heating. Metals, 11(8), 1–15. https://doi.org/10.3390/met11081281

Liu, T., Hower, J. C. & Huang, C.-H. (2023). Recovery of Rare Earth Elements from Coal Fly Ash with Betainium Bis (trifluoromethylsulfonyl) imide: Different Ash Types and Broad Elemental Survey. Minerals, 13(7), 1–16. https://doi.org/10.3390/min13070952

Massari, S. & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43. https://doi.org/10.1016/j.resourpol.2012.07.001

Molina-Calderón, L., Basualto-Flores, C., Paredes-García, V. & Venegas-Yazigi, D. (2022). Advances of magnetic nanohydrometallurgy using superparamagnetic nanomaterials as rare earth ions adsorbents: A grand opportunity for sustainable rare earth recovery. Separation and Purification Technology, 299, 1–28. https://doi.org/10.1016/j.seppur.2022.121708

Pagano, G. (2016). Rare earth elements in human and environmental health. At the crossroads between toxicity and safety. Jenny Stanford Publishing. https://doi.org/10.1201/9781315364735

Pan, J., Hassas, B. V., Rezaee, M., Zhou, C. & Pisupati, S. V. (2021). Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes. Journal of Cleaner Production, 284, 1–36. https://doi.org/10.1016/j.jclepro.2020.124725

Pathapati, S. V. S. H., Free, M. L. & Sarswat, P. K. (2023). A Comparative Study on Recent Developments for Individual Rare Earth Elements Separation. Processes, 11(7), 1–28. https://doi.org/10.3390/pr11072070

Proelss, J., Schweizer, D. & Seiler, V. (2020). The economic importance of rare earth elements volatility forecasts. International Review of Financial Analysis, 71, 1–45. https://doi.org/10.1016/j.irfa.2019.01.010

Rao, K. A. & Sreenivas, T. (2019). Recovery of rare earth elements from coal fly ash: a review. In Abhilash & A. Akcil, Critical and rare earth elements: Recovery from secondary resources (pp. 343–364). CRC Press. http://dx.doi.org/10.1201/9780429023545-18

Rudnick, R. L. & Gao, S. (2003). Composition of the continental crust. In Turekian, K. K, Holland HD(eds), Treatise on Geochemistry (Vol. 3, pp. 1–64). Elsevier. http://dx.doi.org/10.1016/b0-08-043751-6/03016-4

Seliger, G. (2012). Sustainable manufacturing for global value creation. In G. Seliger, Sustainable manufacturing: Shaping global value creation (pp. 3–8). Springer. https://doi.org/10.1007/978-3-642-27290-5

Seredin, V. V. & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. https://doi.org/10.1016/j.coal.2011.11.001

Silva, L. F., Crissien Borrero, T. J., Tutikian, B. & Sampaio, C. H. (2020). Rare Earth Elements and carbon nanotubes in coal mine around spontaneous combustions. Journal of Cleaner Production, 253, 1–28. http://dx.doi.org/10.1016/j.jclepro.2020.120068

Smith, Y. R., Bhattacharyya, D., Willhard, T. & Misra, M. (2016). Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chemical Engineering Journal, 296, 102–111. http://dx.doi.org/10.1016/j.cej.2016.03.082

Stauffer, P. H., Hendley II, J. W., Haxel, G. B., Boore, S. & Mayfield, S. (2002). Rare earth elements: critical resources for high technology. US Geological Survey, 87(2), 1–4. https://pubs.usgs.gov/fs/2002/fs087-02/

Stuckman, M. Y., Lopano, C. L. & Granite, E. J. (2018). Distribution and speciation of rare earth elements in coal combustion by-products via synchrotron microscopy and spectroscopy. International Journal of Coal Geology, 195, 125–138. https://doi.org/10.1016/j.coal.2018.06.001

Swain, B. (2023). Challenges and opportunities for sustainable valorization of rare earth metals from anthropogenic waste. Reviews in Environmental Science and Bio/Technology, 22(1), 133–173. https://doi.org/10.1007/s11157-023-09647-2

Swain, N. & Mishra, S. (2019). A review on the recovery and separation of rare earths and transition metals from secondary resources. Journal of cleaner production, 220, 884–898. https://doi.org/10.1016/j.jclepro.2019.02.094

Thompson, R. L., Bank, T., Montross, S., Roth, E., Howard, B., Verba, C. & Granite, E. (2018). Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 143, 1–11. https://doi.org/10.1016/j.sab.2018.02.009

Wen, Z., Zhou, C., Pan, J., Cao, S., Hu, T., Ji, W. & Nie, T. (2022). Recovery of rare-earth elements from coal fly ash via enhanced leaching. International Journal of Coal Preparation and Utilization, 42(7), 2041–2055. https://doi.org/10.1016/j.chemosphere.2020.126112

Zhang, W., Noble, A., Yang, X. & Honaker, R. (2020). A comprehensive review of rare earth elements recovery from coal-related materials. Minerals, 10(5), 1–28. https://doi.org/10.3390/min10050451

Publicado

2023-05-19

Cómo citar

Crissien Borrero, T. J., Stringuini, Y. M., Hernández Palma, H., & Dalmora, A. (2023). Importancia de los Elementos de Tierras Raras en la Sociedad Moderna y su Potencial Fuente en las Cenizas de Carbón. LADEe Latin American Developments in Energy Engineering, 4(1), 49–66. Recuperado a partir de https://ojstest.certika.co/IDEE/article/view/5311

Número

Sección

Artículos