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Abstract
Introduction— Currently, the software develop-
ment industry is living in its golden age due to 
the progress in areas related to machine learning, 
which is part of AI techniques. These advances 
have allowed tasks considered exclusively human to 
be solved using a computer. However, the complex-
ity and the extensive area covered by new projects 
that must be developed using programming lan-
guages have slowed down project delivery times and 
affected the company’s productivity.
Objective— This research presents the methodol-
ogy carried out for constructing a recurrent neu-
ral network model for the automatic generation of 
source code related to graphical user interfaces 
using Python programming language.
Methodology— By constructing a natural lan-
guage-related dataset for describing graphical 
interfaces programmed in Python, a deep neural 
network model is built to generate automatic source 
code.
Results— The trained model achieves loss and per-
plexity values of 1.57 and 4.82, respectively, in the 
validation stage, avoiding overfitting in the model’s 
training.
Conclusions— A neural network model is trained 
to process the natural language related to the 
request to create graphical interfaces using the 
Python programming language to automatically 
generate source code that can be executed through 
the Python interpreter.
Keywords— Machine learning; natural language 
processing; graphical interface; transfotmers; 
Tkinter; deep learning; automatic code generation; 
automatic code generation

Resumen
Introducción— En la actualidad, la industria del desar-
rollo de software vive su época dorada debido al avance 
en áreas relacionadas con el aprendizaje máquina el cual 
es parte de las técnicas de IA, estos avances han per-
mitido que tareas consideradas exclusivamente del ser 
humano sean resueltas utilizando un equipo de cómputo. 
Sin embargo, la complejidad y la extensa área que están 
abarcando los nuevos proyectos que deben ser desarrol-
lados utilizando lenguajes de programación han gen-
erado que los tiempos de entrega de los proyectos se vean 
ralentizados y la productividad de la empresa afectada.
Objetivo— Esta investigación presenta la metodología 
que se llevó a cabo para la construcción de un modelo de 
red neuronal recurrente para la generación automática 
de código fuente relacionado con interfaces gráficas de 
usuario utilizando lenguaje de programación Python.
Metodología— Mediante la construcción de un con-
junto de datos relacionado con el lenguaje natural para 
la descripción de interfaces gráficas programadas en 
Python se construye un modelo de red neuronal pro-
funda para generar código fuente automático.
Resultados— El modelo entrenado logra alcanzar 
valores de pérdida y perplejidad de 1.57 y 4.82 respectiv-
amente en la etapa de validación evitando el sobreajuste 
en el entrenamiento del modelo. 
Conclusiones— Un modelo de red neuronal es entre-
nado logrando procesar el lenguaje natural relacionado 
con la petición de creación de interfaces gráficas utili-
zando el lenguaje de programación Python para generar 
automáticamente código fuente que puede ser ejecutado 
a través del intérprete de Python. 
Palabras clave— Aprendizaje automático; procesa-
miento de lenguaje natural; interfaz gráfica; transfor-
madores; Tkinter; aprendizaje profundo; generación 
automática de código
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I. IntroduccIón

Trends in software development have shown that its growth and change are compared to tech-
nological advances. Areas such as artificial intelligence, the internet of things, advanced web 
applications, and languages for application development [1], among many others, have a high 
application in different areas of computing and are currently generating that the software 
development industry is living a golden age in the resolution of essential tasks for the world 
[2]. Artificial intelligence has shown that the dream of human beings to replicate their way of 
learning in a computer is getting closer and closer; tasks that were exclusive to humans are 
already being performed by computational algorithms that obtain similar or superior results. 
nowadays, improving code programming tasks is a necessity [3]. every day, the tasks to be 
solved by developers are bigger and more complex. Usually, each project has repetitive tasks that 
revolve around the problem’s solution; these tasks tend to slow delivery times since they entail 
a more significant effort in the development stage, affecting productivity, simplification, porta-
bility, and consistency [4]. Having these repetitive code tasks generate that developers lose the 
focus of the application and the context of the logic producing unnecessary delays in achieving 
the objective [5].

Currently, the solutions that seek to help developers are mainly focused on the creation of 
development editors, which allow them to add code fragments that speed up the creation process 
[5]. However, this tool does not have any associated machine learning model. Automatic code 
generation is the branch of computer science that seeks to assist programmers in the automatic 
and intelligent creation of code based on input and output variables [6], allowing to detection or 
building of executable source code using a programming language and natural language pro-
cessing, thus speeding up application implementation processes. In this work it is intended to 
deepen in the Big Code research area [6]. which joins machine learning models together with 
deep neural network architectures to create software applications that are robust and scalable, 
speeding up the development processes that are currently in such high demand. Therefore, this 
project seeks to answer the following question: Is it possible to create a model based on artificial 
intelligence that automatically generates source code related to graphic interface generation 
applications?

Automatic code generation represents the future in software engineering and development, 
creating applications that favor productivity: referred to the generation of code only once and 
its reuse in other projects; simplification: which seeks to create source code of some abstract 
description; portability: refers to the adaptation of the generated source code to multiple devel-
opment platforms, specifically to programming languages; and finally consistency: generating 
repeatability in the results obtained by the code generator, are considered key aspects that all 
development based on programming must contain. On the other hand, advances in automatic 
code generation will have a direct impact on the performance and productivity of companies 
because their objectives are focused on predicting explicit code or program structure by receiv-
ing as input variables multimodal data sources such as incomplete program codes, codes in dif-
ferent programming languages and descriptions based on natural language [6]. with respect to 
software developers, the benefit of automatic source code generation will be to assist profession-
als in the generation of repetitive code structures that solve tasks based on the description of 
the input requirements and the corresponding output, maximizing productivity in development 
and ensuring that the professional does not lose focus of the application and the initial logic to 
have more robust programs that meet quality standards: productivity, reusability, simplifica-
tion, and portability.

II. State of the art

The main applications for generating source code in programming language-related topics have 
been studied in various types of research. In 2017, researchers from DeepMind and OX (USA) 
present a novel approach based on a neural network architecture that generates an output 
sequence dependent on several input functions [7]; this is done to address the issue related to the 
dependency of language generation tasks mediated by the production of structured and unstruc-
tured text; its development allows to generate a mixture between natural language and a struc-
tured specificatio n. UC (USA) studies proposes that code generation tasks comprise processes 
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that receive unstructured or partially structured inputs and produce executable outputs [8]; in 
their work, they obtain a model with 79.2 in BleU on the Hearthstone dataset; their model 
consists of abstract syntax networks whose output is represented by Abstract Syntax Trees 
(ASTs). CMU (USA) scientists consider the transformation of natural language descriptions to 
code written in Python [9]; they propose a neural network architecture driven by a grammatical 
model to shape the input data to the model and consider it as prior knowledge; their results far 
exceed the approaches that existed to date related to semantic analysis and code generation. In 
2018, a research thesis from UCU (Ukraine) continued in the line of generating code focused 
on the Python programming language [10]; its development focuses on the premise that soft-
ware development requires multiple skills and that it is unlikely to know all existing solutions 
by the development community; this allows him to consider the idea of creating a sequence by 
sequence model with a recursive coder, also presents as a novel point working with syntactic 
trees instead of a simple sequence in the model input data. The CMU present TRAnX [11], a 
neural semantic parser based on changing natural language expressions into formal represen-
tations of meaning; their results show that TRAnX is highly accurate, and its generalization 
capability with different tasks such as semantic analysis and code generation is reliable and 
significant. Finally, in 2020, BIT (Cn) investigators [3], state that with the progress in the 
field of deep learning, code generation from natural language is relevant to research; in their 
research, they state that although there are many code generators, most of them use BleU as 
evaluation metric, in addition, the data sets used lack diversity, for such reasons, the research 
focuses its efforts on tracking a more robust data set and evaluate it with five new aspects: lexi-
cal similarity, tree similarity, syntactic legality, semantic legality, and functional correctness. 
with the latter, they seek to give a greater analysis capacity to the methods or algorithms in 
the state of the art regarding automatic code generation.

The previously analyzed works can be framed in 4 traditional approaches to handle the syn-
tactic and semantic part of the source code, namely: domain-specific language-guided models, 
probabilistic grammars, simple probabilistic language models and simple neural language mod-
els [6]. Concerning Domain-specific language-guided Models (DSls), previous research [12], 
[13], have studied such algorithms and have succeeded in reducing the search space to suggest 
expressions that allow source code completion from succinct type computations and higher-order 
functions. On the probabilistic grammar side, some authors argue that the production of rules 
can generate all possible source code instructions and that these models can find patterns that 
generate more complex code structures. The n-gram language models are another approach that 
enables automatic code construction, from who built a language model for source code using 
n-grams in a novel way to who used n-grams for language mining tasks. Finally, simple neu-
ral program models consist of neural networks that embed models that use the one-hot encod-
ing of a word to transform it into an intermediate vector of words with a shorter length than 
the initial word. These algorithms are known as distributed word representations [6]. In this 
research, an algorithm will be developed for the automatic generation of source code based on 
the Python programming language, with datasets recognized as state of the art and using the 
metrics proposed [3], the innovative part of the project will be the construction of simple graphi-
cal user interface programs using a case study related to a web component.

III. MaterIalS and MethodS

The main task in the development of the project was the creation of 7 graphical interfaces using 
the Python Tkinter library, which were used to implement the data capture tool, as follows, the 
Python code of each gUI and its respective representation  (Fig. 1; Fig 2; Table 1; Table 2).

Fig. 1. graphical interface 1: two labels, two text boxes, and one button. 
Source: Self-made.
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Fig. 2. graphical interface 2: two buttons.
Source: Self-made.

table 1.
Source code of graphIcal Interface related to fIgure 1. 

graphic Interface Code 1
from tkinter import *
root = Tk()
root.columnconfigure(0, weight=0)
root.columnconfigure(1, weight=1)
root.rowconfigure(2, weight=1)
label(root, text= “nombre”).grid(row=0, columna=0)
label(root, text= “Apellido”).grid(row=1, columna=0)
entry(root).grid(row=0, column=1, sticky=e+w)
entry(root).grid(row=1, column=1, sticky=e+w)
Button(root, text=”Aceptar”).
grid(pady=10, padx=10, row=3, columna=0, 
columnspan=2,sticky=S+n+e+w)
root.mainloop()

Source: Self-made.

table 2.
Source code of graphIcal Interface related to fIgure 2. 

graphic Interface Code 2
import tkinter as tk
class Application(tk.Frame):
 def _init_(self, master=none):
 super()._init_(master)
 self.master = master
 self.pack()
 self.create_widgets()
def create_widgets(self):
 self.hi_there = tk.Button(self)
 self.hi_there = [“text”] = “haz clic”
 self.hi_there = [“command”] = self.say_hi
 self.hi_there.pack(side=”top”) 
 self.quit = tk.Button(self, text=”Salir”, fg=”red”), 
command=self.master.destroy
 self.quit.pack(side=”bottom”)
def say_hi(self):
 print(“Hola mundo”)
root = tk.Tk()
app = Application(master=root)
app,mainloop()

Source: Self-made.

In addition, other graphical interfaces built to feed the dataset are shown; the gUIs can be 
seen in Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7.

Fig. 3. graphical interface with widgets: labels, text boxes, radio buttons, and buttons. 
Source: Self-made.
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Fig. 4. graphical interface with widgets: labels, text boxes, buttons. 
Source: Self-made.

Fig 5. graphical interface with widgets: text labels, buttons, and text box. 
Source: Self-made.

Fig. 6. graphical interface with widgets: radio buttons and buttons. 
Source: Self-made.

Fig. 7. graphical interface with widgets: labels, textboxes, check buttons. 
Source: Self-made.

The dataset was constructed by applying a data capture tool to a group of Systems engineer-
ing students from different semesters; the dataset is composed of two essential bases: a natural 
language text and a python code text. The first version of the dataset comprises 722 records 
describing each of the interfaces created (Fig. 8).

Fig. 8. Dataset Version 1, result provided by the data capture tool. 
Source: Self-made.
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The final version of the dataset is composed of a sentence in Spanish describing the graphic 
interface to be created; this process will be expanded in the chapter on results and analysis. 
Once the data for training and its natural language processing had been constructed, an algo-
rithm for the automatic generation of code for the generation of graphical interfaces was built 
by applying artificial intelligence techniques related to deep neural networks.

Transformers are the predominant architecture in most state-of-the-art nlP applications 
today; the following explains the transformer architecture that was applied to a sequence-to-
sequence learning problem. The transformer can be understood in terms of its three compo-
nents:

1) An encoder that encodes an input sequence into state representation vectors.
2) An attention mechanism that allows our transformer model to focus on the 

c orrect aspects of the sequential input stream. This is used repeatedly in both 
the encoder and decoder to help them contextualize the input data.

3) A decoder decodes the state representation vector to generate the target output 
sequence.

The encoder in this research accepts a batch of source sequences and sequence masks as 
input. The source mask contains one at locations where the input sequence has valid values 
and 0 where the input sequence has <pad> values. This ensures that the attention mechanism 
within the encoder does not pay attention to the <pad> values; the complete transformer is 
shown in Fig. 9.

Fig. 9. The complete architecture of a Transformer. 
Source: wolfram Computation Meets knowledge.

IV. analySIS and reSultS

A google Forms form was built where the graphical interfaces created were assembled, 
and a simple textual description of each one was requested using natural language, which 
was applied in the Artificial Intelligence & Big Data (IA&BD) seedbed of the Corporación 
Universitaria Comfacauca – Unicomfacauca (Colombia), which resulted in 722 records 
(Fig. 10).
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Fig. 10. Data capture tool applied to Systems engineering students from different semesters. 
Source: Self-made.

The captured information is recorded as follows: in a .xlsx file containing 722 records (Fig. 
11).

Fig. 11. Captured records. 
Source: Self-made.

People described the graphical interfaces using natural language processing; it was applied 
to 115 students, and 722 answers were recorded, then a filtering process was performed to 
eliminate erroneous answers, and finally, the final version of the dataset was built, which is 
composed of a sentence in Spanish with the description of the graphical interface and Python 
code (Fig. 12).

Fig. 12. Dataset final version. 
Source: Self-made.

Fig. 12 shows the dataset filtered and stored in a spreadsheet; however, the format required 
for training the dataset using recurrent neural network architectures must be modified; Fig. 
13 shows the result obtained by making the change:
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Fig. 13. Two records compose the training dataset for the automatic generation of source code for graphical 
interfaces.

Source: Self-made.

In Fig. 13 the first line with the pound sign shows the description of the gUI by the user 
using natural language, and the following lines show the source code that meets the require-
ments requested by the user. Once the construction of the dataset is finished, deep neural 
network training is carried out to obtain a model that processes the natural language related 
to the gUI description to be converted to Python code using the Tkinter module. The training 
was tested with a recurrent neural network architecture on the dataset allowing for evaluation 
accuracy metrics both in training and validation: loss metric (function loss metric) yielding a 
value of 1.64 in the training stage and a value of 1.57 in the validation stage. Another metric 
that was evaluated is the perplexity generating values of 5.15 in the training stage and a value 
of 4.82 in the validation stage; this metric allows for measuring how well a probability distri-
bution or probability model predicts a sample. The values achieved by the metrics in both the 
training and validation processes allow us to affirm that the model avoided overfitting since 
a decrease in the two metrics is observed in these stages. Other hyperparameters of interest 
that were applied in the training of the neural network were: 50 epochs, three encoding lay-
ers, and three decoding layers. The training took 10 minutes and was executed through the 
google Colab tool (Fig. 14).

Fig. 14. Results of training on Jupyter notebooks in google Colab.
Source: Self-made.

Finally, Fig. 15 and Fig. 16 show the operation and testing of the trained model for the auto-
matic generation of source code for the generation of graphical interfaces in Python using the 
Tkinter module. Fig. 15 shows the sentence sent to the neural network, which constitutes the 
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request to create a graphical interface: “The interface has two text boxes and a button” when 
executing the model, it can be observed how the neural network responds with a Python code 
that when executed on an interpreter its result is visualized in Fig. 15.

Fig. 15. Testing of the trained model on a user request for the creation of a graphical user interface.
Source: Self-made.

Fig. 16. Result of running the code generated by the neural network model on a Python interpreter.
Source: Self-made.

V. concluSIonS

A neural network model is trained by managing to process the natural language related to 
the request for creating graphical interfaces using the Python programming language to 
automatically generate source code that can be executed through the Python interpreter. The 
model achieves loss and perplexity values in the validation stage of 1.57 and 4.82, respectively; 
furthermore, these values are lower than those achieved in the training stage, thus corrobo-
rating that the model avoided overfitting.

A dataset was constructed using the help of 115 Systems engineering students from dif-
ferent semesters, who described graphical interfaces using natural language. Subsequently, 
the dataset feeds a recurrent neural network model to create a model for automatic source 
code generation. In future work, the authors propose to enrich the dataset with more robust 
graphical interfaces and to take the trained neural network architecture to generate source 
code in web components. To strengthen the research results, it is recommended to enrich the 
dataset with more robust graphical interfaces; in the project, gUIs use a maximum of four 
widgets.

acknowledgeMentS

we thank the Corporación Universitaria Comfacauca – Unicomfacauca, Faculty of engineer-
ing, MInD Research group - Popayán. 

referenceS

 

[1] V. kononenko, “10 Breakthrough Software Development Trends in Coming Years,” Computools, Aug. 
2022. Available: https://computools.com/software-development-trends/

[2] T. Brown, “7 Software Development Trends 2023 Revealed,” Hackernoon, Nov. 2019. Available: https://
hackernoon.com/software-development-trends-2020-revealed-spi305m

https://computools.com/software-development-trends/
https://hackernoon.com/software-development-trends-2020-revealed-spi305m
https://hackernoon.com/software-development-trends-2020-revealed-spi305m


46

ARTIFICIAl neURAl neTwORk MODel FOR AUTOMATIC CODe geneRATIOn In gRAPHICAl InTeRFACe APPlICATIOnS

[3] J. Zhu & M. Shen, “Research on Deep learning Based Code generation from natural language Des-
cription,” presented at 5th International Conference on Cloud Computing and Big Data Analytics, 
ICCCBDA, CGDU, CN, 10-13 Apr. 2020. https://doi.org/10.1109/ICCCBDA49378.2020.9095560

[4] G. Tomassetti, “A Guide to Code Generation,” Strumenta, May. 2018. Available: https://tomassetti.me/
code-generation/

[5] S. Shim, P. Patil, R. Yadav, A. Shinde & V. Devale, “DeeperCoder: Code Generation Using Machine 
learning,” presented at 2020 10th Annual Computing and Communication Workshop and Conference, 
CCwC, lV, nV, USA, 6-8 Jan. 2020. https://doi.org/10.1109/CCwC47524.2020.9031149

[6] T. le, H. Chen & M. Babar, “Deep learning for Source Code Modeling and generation: Models, 
Applications, and Challenges,” ACM Comput Surv, vol. 53, no. 3, pp. 1–18, Feb. 2020. https://doi.
org/10.1145/3383458

[7] w. ling, P. Blunsom, e. grefenstette, k. Hermann, T. kočiský, F. wang, & A. Senior, “latent Predictor 
networks for Code generation”, presented at 54th Annual Meeting of the Association for Computational 
Linguistics, ACl, BE, GE, 7-12 Aug. 2016. https://doi.org/10.18653/v1/p16-1057

[8] M. Rabinovich, M. Stern & D. klein, “Abstract syntax networks for code generation and semantic par-
sing,” presented at 55th Annual Meeting of the Association for Computational Linguistics, ACl, VAN, 
CA, 30 Jul. - 4 Aug. 2017. http://dx.doi.org/10.18653/v1/P17-1105

[9] P. Yin & g. neubig, “A syntactic neural model for general-purpose code generation,” presented at 55th 
Annual Meeting of the Association for Computational Linguistics, ACl, VAN, CA, 30 Jul. - 4 Aug. 2017. 
https://doi.org/10.18653/v1/P17-1041

[10] A. Stehnii, “generation of code from text description with syntactic parsing and Tree2Tree model”, 
Master Thesis, Dept. Comp. Sci., Fac. Appl. Sci., UCU, lVI, UA, 2017. Available: http://er.ucu.edu.ua/
handle/1/1191

[11] P. Yin & g. neubig, “TRAnX: A transition-based neural abstract syntax parser for semantic parsing 
and code generation,” presented at Conference on Empirical Methods in Natural Language Processing: 
System Demonstrations, ACl, BX, Be, 10-11 Nov. 2018. https://doi.org/10.18653/v1/d18-2002

[12] S. gulwani, “Dimensions in Program Synthesis,” presented at 12th international ACM SIGPLAN sym-
posium on Principles and practice of declarative programming, PPDP'10, nY, nY, USA, 26-28 Jul. 2010. 
https://doi.org/10.1145/1836089.1836091

[13] M. Jaderberg, k. Simonyan, A. Zisserman & k. kavukcuoglu, “Spatial transformer networks,” Adv Neu-
ral Inf Process Syst, vol. 2015, pp. 1–15, Jun. 2015. https://doi.org/10.48550/arXiv.1506.02025

Daniel Esteban Arenas-Varela. Systems engineer. Member of the Artificial Intelligence 
& Big Data Research group. https://orcid.org/0000-0002-8576-5381

Julián Fernando Muñoz-Ordóñez. Physical engineer. Master in Computer Science. PhD 
student at University of Cauca (Colombia). Auxiliar Professor Corporación Universitaria 
Comfacauca – Unicomfacauca (Colombia). Director of the Artificial Intelligence & Big Data 
Research group, Junior Researcher. https://orcid.org/0000-0001-9393-6139 

https://doi.org/10.1109/ICCCBDA49378.2020.9095560
https://tomassetti.me/code-generation/
https://tomassetti.me/code-generation/
https://doi.org/10.1109/CCWC47524.2020.9031149
https://doi.org/10.1145/3383458
https://doi.org/10.18653/v1/p16-1057
http://dx.doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1041
http://er.ucu.edu.ua/handle/1/1191
http://er.ucu.edu.ua/handle/1/1191
https://doi.org/10.18653/v1/d18-2002
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.48550/arXiv.1506.02025
https://orcid.org/0000-0002-8576-5381
https://orcid.org/0000-0001-9393-6139

	_Hlk112868140

