
.
© The author; licensee Universidad de la Costa - CUC.

INGE CUC vol. 19 no. 1, pp. 37-46. January - June, 2023
Barranquilla. ISSN 0122-6517 Impreso, ISSN 2382-4700 Online

.

.
Arenas Varela & Muñoz Ordóñez / INGE CUC, vol. 19 no. 1, pp. 38–46. January - June, 2023

Artificial neural network model for automatic code
generation in graphical interface applications

Modelo de red neuronal artificial para
la generación automática de código en

aplicaciones de interfaces gráficas
DOI: http://doi.org/10.17981/ingecuc.19.1.2023.04

Scientific Research Article. Fecha de Recepción: 13/09/2022. Fecha de Aceptación: 14/12/2022.

Daniel Esteban Arenas-Varela
Corporación Universitaria Comfacauca-Unicomfacauca. Popayán (Colombia)

danielarenas@unicomfacauca.edu.co

Julián Fernando Muñoz-Ordóñez
Corporación Universitaria Comfacauca-Unicomfacauca. Popayán (Colombia)

jfmunoz@unicomfacauca.edu.co
.
To cite this paper
D. Arenas Varela, J. Muñoz Ordóñez, “Artificial neural network model for automatic code generation in graphical interface
applications”, INGE CUC, vol. 18, no. 2, pp. 38–46, 2023. DOI: http://doi.org/10.17981/ingecuc.19.1.2023.04
.

Abstract
Introduction— Currently, the software develop-
ment industry is living in its golden age due to
the progress in areas related to machine learning,
which is part of AI techniques. These advances
have allowed tasks considered exclusively human to
be solved using a computer. However, the complex-
ity and the extensive area covered by new projects
that must be developed using programming lan-
guages have slowed down project delivery times and
affected the company’s productivity.
Objective— This research presents the methodol-
ogy carried out for constructing a recurrent neu-
ral network model for the automatic generation of
source code related to graphical user interfaces
using Python programming language.
Methodology— By constructing a natural lan-
guage-related dataset for describing graphical
interfaces programmed in Python, a deep neural
network model is built to generate automatic source
code.
Results— The trained model achieves loss and per-
plexity values of 1.57 and 4.82, respectively, in the
validation stage, avoiding overfitting in the model’s
training.
Conclusions— A neural network model is trained
to process the natural language related to the
request to create graphical interfaces using the
Python programming language to automatically
generate source code that can be executed through
the Python interpreter.
Keywords— Machine learning; natural language
processing; graphical interface; transfotmers;
Tkinter; deep learning; automatic code generation;
automatic code generation

Resumen
Introducción— En la actualidad, la industria del desar-
rollo de software vive su época dorada debido al avance
en áreas relacionadas con el aprendizaje máquina el cual
es parte de las técnicas de IA, estos avances han per-
mitido que tareas consideradas exclusivamente del ser
humano sean resueltas utilizando un equipo de cómputo.
Sin embargo, la complejidad y la extensa área que están
abarcando los nuevos proyectos que deben ser desarrol-
lados utilizando lenguajes de programación han gen-
erado que los tiempos de entrega de los proyectos se vean
ralentizados y la productividad de la empresa afectada.
Objetivo— Esta investigación presenta la metodología
que se llevó a cabo para la construcción de un modelo de
red neuronal recurrente para la generación automática
de código fuente relacionado con interfaces gráficas de
usuario utilizando lenguaje de programación Python.
Metodología— Mediante la construcción de un con-
junto de datos relacionado con el lenguaje natural para
la descripción de interfaces gráficas programadas en
Python se construye un modelo de red neuronal pro-
funda para generar código fuente automático.
Resultados— El modelo entrenado logra alcanzar
valores de pérdida y perplejidad de 1.57 y 4.82 respectiv-
amente en la etapa de validación evitando el sobreajuste
en el entrenamiento del modelo.
Conclusiones— Un modelo de red neuronal es entre-
nado logrando procesar el lenguaje natural relacionado
con la petición de creación de interfaces gráficas utili-
zando el lenguaje de programación Python para generar
automáticamente código fuente que puede ser ejecutado
a través del intérprete de Python.
Palabras clave— Aprendizaje automático; procesa-
miento de lenguaje natural; interfaz gráfica; transfor-
madores; Tkinter; aprendizaje profundo; generación
automática de código

http://doi.org/10.17981/ingecuc.19.1.2023.04
https://orcid.org/0000-0002-8576-5381
https://orcid.org/0000-0001-9393-6139
http://doi.org/10.17981/ingecuc.19.1.2023.04

38

ARTIFICIAl neURAl neTwORk MODel FOR AUTOMATIC CODe geneRATIOn In gRAPHICAl InTeRFACe APPlICATIOnS

I. IntroduccIón

Trends in software development have shown that its growth and change are compared to tech-
nological advances. Areas such as artificial intelligence, the internet of things, advanced web
applications, and languages for application development [1], among many others, have a high
application in different areas of computing and are currently generating that the software
development industry is living a golden age in the resolution of essential tasks for the world
[2]. Artificial intelligence has shown that the dream of human beings to replicate their way of
learning in a computer is getting closer and closer; tasks that were exclusive to humans are
already being performed by computational algorithms that obtain similar or superior results.
nowadays, improving code programming tasks is a necessity [3]. every day, the tasks to be
solved by developers are bigger and more complex. Usually, each project has repetitive tasks that
revolve around the problem’s solution; these tasks tend to slow delivery times since they entail
a more significant effort in the development stage, affecting productivity, simplification, porta-
bility, and consistency [4]. Having these repetitive code tasks generate that developers lose the
focus of the application and the context of the logic producing unnecessary delays in achieving
the objective [5].

Currently, the solutions that seek to help developers are mainly focused on the creation of
development editors, which allow them to add code fragments that speed up the creation process
[5]. However, this tool does not have any associated machine learning model. Automatic code
generation is the branch of computer science that seeks to assist programmers in the automatic
and intelligent creation of code based on input and output variables [6], allowing to detection or
building of executable source code using a programming language and natural language pro-
cessing, thus speeding up application implementation processes. In this work it is intended to
deepen in the Big Code research area [6]. which joins machine learning models together with
deep neural network architectures to create software applications that are robust and scalable,
speeding up the development processes that are currently in such high demand. Therefore, this
project seeks to answer the following question: Is it possible to create a model based on artificial
intelligence that automatically generates source code related to graphic interface generation
applications?

Automatic code generation represents the future in software engineering and development,
creating applications that favor productivity: referred to the generation of code only once and
its reuse in other projects; simplification: which seeks to create source code of some abstract
description; portability: refers to the adaptation of the generated source code to multiple devel-
opment platforms, specifically to programming languages; and finally consistency: generating
repeatability in the results obtained by the code generator, are considered key aspects that all
development based on programming must contain. On the other hand, advances in automatic
code generation will have a direct impact on the performance and productivity of companies
because their objectives are focused on predicting explicit code or program structure by receiv-
ing as input variables multimodal data sources such as incomplete program codes, codes in dif-
ferent programming languages and descriptions based on natural language [6]. with respect to
software developers, the benefit of automatic source code generation will be to assist profession-
als in the generation of repetitive code structures that solve tasks based on the description of
the input requirements and the corresponding output, maximizing productivity in development
and ensuring that the professional does not lose focus of the application and the initial logic to
have more robust programs that meet quality standards: productivity, reusability, simplifica-
tion, and portability.

II. State of the art

The main applications for generating source code in programming language-related topics have
been studied in various types of research. In 2017, researchers from DeepMind and OX (USA)
present a novel approach based on a neural network architecture that generates an output
sequence dependent on several input functions [7]; this is done to address the issue related to the
dependency of language generation tasks mediated by the production of structured and unstruc-
tured text; its development allows to generate a mixture between natural language and a struc-
tured specificatio n. UC (USA) studies proposes that code generation tasks comprise processes

39

Arenas Varela & Muñoz Ordóñez / INGE CUC, vol. 19, no. 1, pp. 38-46. January - June, 2023

that receive unstructured or partially structured inputs and produce executable outputs [8]; in
their work, they obtain a model with 79.2 in BleU on the Hearthstone dataset; their model
consists of abstract syntax networks whose output is represented by Abstract Syntax Trees
(ASTs). CMU (USA) scientists consider the transformation of natural language descriptions to
code written in Python [9]; they propose a neural network architecture driven by a grammatical
model to shape the input data to the model and consider it as prior knowledge; their results far
exceed the approaches that existed to date related to semantic analysis and code generation. In
2018, a research thesis from UCU (Ukraine) continued in the line of generating code focused
on the Python programming language [10]; its development focuses on the premise that soft-
ware development requires multiple skills and that it is unlikely to know all existing solutions
by the development community; this allows him to consider the idea of creating a sequence by
sequence model with a recursive coder, also presents as a novel point working with syntactic
trees instead of a simple sequence in the model input data. The CMU present TRAnX [11], a
neural semantic parser based on changing natural language expressions into formal represen-
tations of meaning; their results show that TRAnX is highly accurate, and its generalization
capability with different tasks such as semantic analysis and code generation is reliable and
significant. Finally, in 2020, BIT (Cn) investigators [3], state that with the progress in the
field of deep learning, code generation from natural language is relevant to research; in their
research, they state that although there are many code generators, most of them use BleU as
evaluation metric, in addition, the data sets used lack diversity, for such reasons, the research
focuses its efforts on tracking a more robust data set and evaluate it with five new aspects: lexi-
cal similarity, tree similarity, syntactic legality, semantic legality, and functional correctness.
with the latter, they seek to give a greater analysis capacity to the methods or algorithms in
the state of the art regarding automatic code generation.

The previously analyzed works can be framed in 4 traditional approaches to handle the syn-
tactic and semantic part of the source code, namely: domain-specific language-guided models,
probabilistic grammars, simple probabilistic language models and simple neural language mod-
els [6]. Concerning Domain-specific language-guided Models (DSls), previous research [12],
[13], have studied such algorithms and have succeeded in reducing the search space to suggest
expressions that allow source code completion from succinct type computations and higher-order
functions. On the probabilistic grammar side, some authors argue that the production of rules
can generate all possible source code instructions and that these models can find patterns that
generate more complex code structures. The n-gram language models are another approach that
enables automatic code construction, from who built a language model for source code using
n-grams in a novel way to who used n-grams for language mining tasks. Finally, simple neu-
ral program models consist of neural networks that embed models that use the one-hot encod-
ing of a word to transform it into an intermediate vector of words with a shorter length than
the initial word. These algorithms are known as distributed word representations [6]. In this
research, an algorithm will be developed for the automatic generation of source code based on
the Python programming language, with datasets recognized as state of the art and using the
metrics proposed [3], the innovative part of the project will be the construction of simple graphi-
cal user interface programs using a case study related to a web component.

III. MaterIalS and MethodS

The main task in the development of the project was the creation of 7 graphical interfaces using
the Python Tkinter library, which were used to implement the data capture tool, as follows, the
Python code of each gUI and its respective representation (Fig. 1; Fig 2; Table 1; Table 2).

Fig. 1. graphical interface 1: two labels, two text boxes, and one button.
Source: Self-made.

40

ARTIFICIAl neURAl neTwORk MODel FOR AUTOMATIC CODe geneRATIOn In gRAPHICAl InTeRFACe APPlICATIOnS

Fig. 2. graphical interface 2: two buttons.
Source: Self-made.

table 1.
Source code of graphIcal Interface related to fIgure 1.

graphic Interface Code 1
from tkinter import *
root = Tk()
root.columnconfigure(0, weight=0)
root.columnconfigure(1, weight=1)
root.rowconfigure(2, weight=1)
label(root, text= “nombre”).grid(row=0, columna=0)
label(root, text= “Apellido”).grid(row=1, columna=0)
entry(root).grid(row=0, column=1, sticky=e+w)
entry(root).grid(row=1, column=1, sticky=e+w)
Button(root, text=”Aceptar”).
grid(pady=10, padx=10, row=3, columna=0,
columnspan=2,sticky=S+n+e+w)
root.mainloop()

Source: Self-made.

table 2.
Source code of graphIcal Interface related to fIgure 2.

graphic Interface Code 2
import tkinter as tk
class Application(tk.Frame):
 def _init_(self, master=none):
 super()._init_(master)
 self.master = master
 self.pack()
 self.create_widgets()
def create_widgets(self):
 self.hi_there = tk.Button(self)
 self.hi_there = [“text”] = “haz clic”
 self.hi_there = [“command”] = self.say_hi
 self.hi_there.pack(side=”top”)
 self.quit = tk.Button(self, text=”Salir”, fg=”red”),
command=self.master.destroy
 self.quit.pack(side=”bottom”)
def say_hi(self):
 print(“Hola mundo”)
root = tk.Tk()
app = Application(master=root)
app,mainloop()

Source: Self-made.

In addition, other graphical interfaces built to feed the dataset are shown; the gUIs can be
seen in Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7.

Fig. 3. graphical interface with widgets: labels, text boxes, radio buttons, and buttons.
Source: Self-made.

41

Arenas Varela & Muñoz Ordóñez / INGE CUC, vol. 19, no. 1, pp. 38-46. January - June, 2023

Fig. 4. graphical interface with widgets: labels, text boxes, buttons.
Source: Self-made.

Fig 5. graphical interface with widgets: text labels, buttons, and text box.
Source: Self-made.

Fig. 6. graphical interface with widgets: radio buttons and buttons.
Source: Self-made.

Fig. 7. graphical interface with widgets: labels, textboxes, check buttons.
Source: Self-made.

The dataset was constructed by applying a data capture tool to a group of Systems engineer-
ing students from different semesters; the dataset is composed of two essential bases: a natural
language text and a python code text. The first version of the dataset comprises 722 records
describing each of the interfaces created (Fig. 8).

Fig. 8. Dataset Version 1, result provided by the data capture tool.
Source: Self-made.

42

ARTIFICIAl neURAl neTwORk MODel FOR AUTOMATIC CODe geneRATIOn In gRAPHICAl InTeRFACe APPlICATIOnS

The final version of the dataset is composed of a sentence in Spanish describing the graphic
interface to be created; this process will be expanded in the chapter on results and analysis.
Once the data for training and its natural language processing had been constructed, an algo-
rithm for the automatic generation of code for the generation of graphical interfaces was built
by applying artificial intelligence techniques related to deep neural networks.

Transformers are the predominant architecture in most state-of-the-art nlP applications
today; the following explains the transformer architecture that was applied to a sequence-to-
sequence learning problem. The transformer can be understood in terms of its three compo-
nents:

1) An encoder that encodes an input sequence into state representation vectors.
2) An attention mechanism that allows our transformer model to focus on the

c orrect aspects of the sequential input stream. This is used repeatedly in both
the encoder and decoder to help them contextualize the input data.

3) A decoder decodes the state representation vector to generate the target output
sequence.

The encoder in this research accepts a batch of source sequences and sequence masks as
input. The source mask contains one at locations where the input sequence has valid values
and 0 where the input sequence has <pad> values. This ensures that the attention mechanism
within the encoder does not pay attention to the <pad> values; the complete transformer is
shown in Fig. 9.

Fig. 9. The complete architecture of a Transformer.
Source: wolfram Computation Meets knowledge.

IV. analySIS and reSultS

A google Forms form was built where the graphical interfaces created were assembled,
and a simple textual description of each one was requested using natural language, which
was applied in the Artificial Intelligence & Big Data (IA&BD) seedbed of the Corporación
Universitaria Comfacauca – Unicomfacauca (Colombia), which resulted in 722 records
(Fig. 10).

43

Arenas Varela & Muñoz Ordóñez / INGE CUC, vol. 19, no. 1, pp. 38-46. January - June, 2023

Fig. 10. Data capture tool applied to Systems engineering students from different semesters.
Source: Self-made.

The captured information is recorded as follows: in a .xlsx file containing 722 records (Fig.
11).

Fig. 11. Captured records.
Source: Self-made.

People described the graphical interfaces using natural language processing; it was applied
to 115 students, and 722 answers were recorded, then a filtering process was performed to
eliminate erroneous answers, and finally, the final version of the dataset was built, which is
composed of a sentence in Spanish with the description of the graphical interface and Python
code (Fig. 12).

Fig. 12. Dataset final version.
Source: Self-made.

Fig. 12 shows the dataset filtered and stored in a spreadsheet; however, the format required
for training the dataset using recurrent neural network architectures must be modified; Fig.
13 shows the result obtained by making the change:

44

ARTIFICIAl neURAl neTwORk MODel FOR AUTOMATIC CODe geneRATIOn In gRAPHICAl InTeRFACe APPlICATIOnS

Fig. 13. Two records compose the training dataset for the automatic generation of source code for graphical
interfaces.

Source: Self-made.

In Fig. 13 the first line with the pound sign shows the description of the gUI by the user
using natural language, and the following lines show the source code that meets the require-
ments requested by the user. Once the construction of the dataset is finished, deep neural
network training is carried out to obtain a model that processes the natural language related
to the gUI description to be converted to Python code using the Tkinter module. The training
was tested with a recurrent neural network architecture on the dataset allowing for evaluation
accuracy metrics both in training and validation: loss metric (function loss metric) yielding a
value of 1.64 in the training stage and a value of 1.57 in the validation stage. Another metric
that was evaluated is the perplexity generating values of 5.15 in the training stage and a value
of 4.82 in the validation stage; this metric allows for measuring how well a probability distri-
bution or probability model predicts a sample. The values achieved by the metrics in both the
training and validation processes allow us to affirm that the model avoided overfitting since
a decrease in the two metrics is observed in these stages. Other hyperparameters of interest
that were applied in the training of the neural network were: 50 epochs, three encoding lay-
ers, and three decoding layers. The training took 10 minutes and was executed through the
google Colab tool (Fig. 14).

Fig. 14. Results of training on Jupyter notebooks in google Colab.
Source: Self-made.

Finally, Fig. 15 and Fig. 16 show the operation and testing of the trained model for the auto-
matic generation of source code for the generation of graphical interfaces in Python using the
Tkinter module. Fig. 15 shows the sentence sent to the neural network, which constitutes the

45

Arenas Varela & Muñoz Ordóñez / INGE CUC, vol. 19, no. 1, pp. 38-46. January - June, 2023

request to create a graphical interface: “The interface has two text boxes and a button” when
executing the model, it can be observed how the neural network responds with a Python code
that when executed on an interpreter its result is visualized in Fig. 15.

Fig. 15. Testing of the trained model on a user request for the creation of a graphical user interface.
Source: Self-made.

Fig. 16. Result of running the code generated by the neural network model on a Python interpreter.
Source: Self-made.

V. concluSIonS

A neural network model is trained by managing to process the natural language related to
the request for creating graphical interfaces using the Python programming language to
automatically generate source code that can be executed through the Python interpreter. The
model achieves loss and perplexity values in the validation stage of 1.57 and 4.82, respectively;
furthermore, these values are lower than those achieved in the training stage, thus corrobo-
rating that the model avoided overfitting.

A dataset was constructed using the help of 115 Systems engineering students from dif-
ferent semesters, who described graphical interfaces using natural language. Subsequently,
the dataset feeds a recurrent neural network model to create a model for automatic source
code generation. In future work, the authors propose to enrich the dataset with more robust
graphical interfaces and to take the trained neural network architecture to generate source
code in web components. To strengthen the research results, it is recommended to enrich the
dataset with more robust graphical interfaces; in the project, gUIs use a maximum of four
widgets.

acknowledgeMentS

we thank the Corporación Universitaria Comfacauca – Unicomfacauca, Faculty of engineer-
ing, MInD Research group - Popayán.

referenceS

[1] V. kononenko, “10 Breakthrough Software Development Trends in Coming Years,” Computools, Aug.
2022. Available: https://computools.com/software-development-trends/

[2] T. Brown, “7 Software Development Trends 2023 Revealed,” Hackernoon, Nov. 2019. Available: https://
hackernoon.com/software-development-trends-2020-revealed-spi305m

https://computools.com/software-development-trends/
https://hackernoon.com/software-development-trends-2020-revealed-spi305m
https://hackernoon.com/software-development-trends-2020-revealed-spi305m

46

ARTIFICIAl neURAl neTwORk MODel FOR AUTOMATIC CODe geneRATIOn In gRAPHICAl InTeRFACe APPlICATIOnS

[3] J. Zhu & M. Shen, “Research on Deep learning Based Code generation from natural language Des-
cription,” presented at 5th International Conference on Cloud Computing and Big Data Analytics,
ICCCBDA, CGDU, CN, 10-13 Apr. 2020. https://doi.org/10.1109/ICCCBDA49378.2020.9095560

[4] G. Tomassetti, “A Guide to Code Generation,” Strumenta, May. 2018. Available: https://tomassetti.me/
code-generation/

[5] S. Shim, P. Patil, R. Yadav, A. Shinde & V. Devale, “DeeperCoder: Code Generation Using Machine
learning,” presented at 2020 10th Annual Computing and Communication Workshop and Conference,
CCwC, lV, nV, USA, 6-8 Jan. 2020. https://doi.org/10.1109/CCwC47524.2020.9031149

[6] T. le, H. Chen & M. Babar, “Deep learning for Source Code Modeling and generation: Models,
Applications, and Challenges,” ACM Comput Surv, vol. 53, no. 3, pp. 1–18, Feb. 2020. https://doi.
org/10.1145/3383458

[7] w. ling, P. Blunsom, e. grefenstette, k. Hermann, T. kočiský, F. wang, & A. Senior, “latent Predictor
networks for Code generation”, presented at 54th Annual Meeting of the Association for Computational
Linguistics, ACl, BE, GE, 7-12 Aug. 2016. https://doi.org/10.18653/v1/p16-1057

[8] M. Rabinovich, M. Stern & D. klein, “Abstract syntax networks for code generation and semantic par-
sing,” presented at 55th Annual Meeting of the Association for Computational Linguistics, ACl, VAN,
CA, 30 Jul. - 4 Aug. 2017. http://dx.doi.org/10.18653/v1/P17-1105

[9] P. Yin & g. neubig, “A syntactic neural model for general-purpose code generation,” presented at 55th
Annual Meeting of the Association for Computational Linguistics, ACl, VAN, CA, 30 Jul. - 4 Aug. 2017.
https://doi.org/10.18653/v1/P17-1041

[10] A. Stehnii, “generation of code from text description with syntactic parsing and Tree2Tree model”,
Master Thesis, Dept. Comp. Sci., Fac. Appl. Sci., UCU, lVI, UA, 2017. Available: http://er.ucu.edu.ua/
handle/1/1191

[11] P. Yin & g. neubig, “TRAnX: A transition-based neural abstract syntax parser for semantic parsing
and code generation,” presented at Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, ACl, BX, Be, 10-11 Nov. 2018. https://doi.org/10.18653/v1/d18-2002

[12] S. gulwani, “Dimensions in Program Synthesis,” presented at 12th international ACM SIGPLAN sym-
posium on Principles and practice of declarative programming, PPDP'10, nY, nY, USA, 26-28 Jul. 2010.
https://doi.org/10.1145/1836089.1836091

[13] M. Jaderberg, k. Simonyan, A. Zisserman & k. kavukcuoglu, “Spatial transformer networks,” Adv Neu-
ral Inf Process Syst, vol. 2015, pp. 1–15, Jun. 2015. https://doi.org/10.48550/arXiv.1506.02025

Daniel Esteban Arenas-Varela. Systems engineer. Member of the Artificial Intelligence
& Big Data Research group. https://orcid.org/0000-0002-8576-5381

Julián Fernando Muñoz-Ordóñez. Physical engineer. Master in Computer Science. PhD
student at University of Cauca (Colombia). Auxiliar Professor Corporación Universitaria
Comfacauca – Unicomfacauca (Colombia). Director of the Artificial Intelligence & Big Data
Research group, Junior Researcher. https://orcid.org/0000-0001-9393-6139

https://doi.org/10.1109/ICCCBDA49378.2020.9095560
https://tomassetti.me/code-generation/
https://tomassetti.me/code-generation/
https://doi.org/10.1109/CCWC47524.2020.9031149
https://doi.org/10.1145/3383458
https://doi.org/10.18653/v1/p16-1057
http://dx.doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1041
http://er.ucu.edu.ua/handle/1/1191
http://er.ucu.edu.ua/handle/1/1191
https://doi.org/10.18653/v1/d18-2002
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.48550/arXiv.1506.02025
https://orcid.org/0000-0002-8576-5381
https://orcid.org/0000-0001-9393-6139

	_Hlk112868140

