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Resumen
Introducción— Actualmente, la calidad del software en una carac-
terística fundamental para asegurarse un espacio en el mercado global 
que día a día es más competitivo y exigente. Las pruebas de software 
permiten a las empresas desarrolladoras de software encontrar y cor-
regir fallos y con ello elevar la calidad de sus productos. El costo de las 
pruebas hoy se estima en un 50% del costo total del desarrollo de soft-
ware, por esto se hace necesario encontrar formas menos costosas que 
garanticen altos niveles de detección de fallos. En este escenario, las 
pruebas de caja negra tienen un papel fundamental y dentro de estas 
pruebas los enfoques combinatoriales son una de las mejores opciones. 
En las pruebas combinatorias se hace necesario que los usuarios pro-
badores (testers) cuenten con una herramienta que les proporcione el 
menor número de casos de prueba con la mayor cobertura (detección de 
fallos) de acuerdo con los parámetros del método (procedimiento, función 
u otro) que desea probar, y este es el objetivo principal de este trabajo.
Objetivo— En este artículo se presenta un algoritmo que soporta la 
generación de casos de prueba en pruebas de caja negra basado en la cre-
ación de Arreglos de Cobertura Mixta (MCA). Estos arreglos permiten 
generar el menor número de casos de prueba requeridos para probar una 
unidad de código con la mayor cobertura requerida (mayor posibilidad 
de detectar fallos). El algoritmo propuesto construye una solución inicial 
basado en un algoritmo codicioso (greedy) y luego mejora esta solución a 
través de un proceso iterativo orientado por recocido simulado (algoritmo 
metaheurístico) y tres formas de definir soluciones vecinas.
Metodología— La investigación se realizó siguiendo el Patrón de 
Investigación Iterativa propuesto por Pratt. Primero se identificaron los 
principales problemas reportados en el estado del arte para la construc-
ción de MCA, luego se realizó una revisión de las propuestas de solución 
a estos problemas. Después se creó un primer algoritmo y luego se fue 
modificando en forma iterativa este algoritmo, incluyendo y removiendo 
componentes de acuerdo con resultados experimentales de su funciona-
miento. Cuando se obtuvo la versión deseada, se realizó un proceso de 
afinamiento de parámetros y se comparó con los mejores resultados pre-
sentados en la literatura, resultados obtenidos por diferentes algoritmos.
Resultados— El algoritmo propuesto obtiene MCA que son competi-
tivos (en promedio 3 casos de prueba adicionales) frente a los mejores 
reportados en el estado del arte en un tiempo corto de ejecución, aspecto 
que es de especial interés para los probadores de software.
Conclusiones— Se confirmó que el enfoque codicioso y metaheurístico 
basado en recocido simulado es una buena alternativa para la construc-
ción de un MCA. Los algoritmos de construcción de soluciones vecinas 
son claves para encontrar el MCA requerido y en un menor tiempo de 
ejecución.
Palabras clave— Arreglos de Cobertura; Arreglos de Cobertura Mix-
tos; Algoritmos Metaheurísticos; Algoritmos Codiciosos; Recocido Simu-
lado

Abstract
Introduction— Currently, software quality is a fundamental 
feature to ensure a space in the global market that day by day 
is more competitive and demanding. Software testing allows 
software developers to find and fix bugs and, thereby, raise the 
quality of their products. The cost of testing is now estimated 
at 50% of the total cost of software development, so it is nec-
essary to find less expensive ways to ensure elevated levels 
of fault detection. In this scenario, black box tests play a key 
role; within these tests, combinatorial approaches are one of 
the best options. In combinatorial tests, test users must have 
a tool that provides them with the least number of test cases 
with the greatest coverage (failure detection) according to the 
parameters of the method (procedure, function, or other) that 
they want to test, and this is the main objective of this work.
Objective— This paper presents an algorithm that supports 
the generation of test cases in black box tests based on the 
creation of Mixed Covering Arrays (MCA). These fixes allow 
you to generate the smallest number of test cases required to 
test a unit of code with the highest required coverage. The pro-
posed algorithm builds an initial solution based on a greedy 
algorithm and then improves this solution through an itera-
tive process oriented by simulated annealing (metaheuristic 
algorithm).
Methodology— The research was conducted following the 
Iterative Research Pattern proposed by Pratt. First, the main 
problems reported in the state of the art for the construction 
of CSF were identified, then a review of the proposed solutions 
to these problems was performed. Then a first algorithm was 
created and then iteratively modified this algorithm, includ-
ing, and removing components according to the experimental 
results of its operation. When the desired version was obtained, 
a process of refinement of parameters was performed and com-
pared with the best results presented in the literature, results 
obtained by different algorithms.
Results— The proposed algorithm obtains MCAs that are 
competitive (on average 3 additional test cases) against the 
best reported in the state of the art in an abbreviated execution 
time, an aspect that is of special interest for software testers.
Conclusions— It was confirmed that the greedy and meta-
heuristic approach based on simulated annealing is a suitable 
alternative for the construction of a CSF. Neighboring solution 
construction algorithms are key to finding the required MCA 
in a shorter execution time.
Keywords— Covering Arrays; Mixed Covering Arrays; Meta-
heuristic algorithms; Greedy algorithms; Simulated Anneal-
ing
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I. Introduction

The constant growth of the computer industry and the high data processing needs make the 
world of work increasingly intricate, so every day it becomes more necessary to have software 
tools to organize and facilitate the handling of information. Today, software systems control and 
manage huge-economic, health, and transportation systems, among others [1]. Failure to do so 
could cost substantial amounts of money and even the loss of human life. Therefore, errors in 
such systems are inadmissible and as a consequence companies currently invest large amounts 
of money in software testing to detect design and coding errors, among others, to ensure the 
reliability of the software that is delivered as the final product [2], [3].

The literature reports different techniques to test software, broadly organized into functional 
(unit, interface, regression, integration, among others) and non-functional (acceptance, perfor-
mance, installation, reliability, security, among others). Non-functional tests focus on significant 
aspects of product behavior but are not related to its functions. In contrast, functional tests are 
defined considering the system requirements and validate and verify that the product complies 
with the specifications. Within the functional tests, there are a variety of techniques, and the 
black box tests are one of the most used.

Black box tests can be designed in various ways, highlighting the use of Covering Arrays 
(CA) and mixed Covering Arrays (MCA), which have successfully demonstrated a decrease in 
the number of test cases that need to be performed, which implies a lower cost and time in the 
execution of tests, ensuring maximum coverage, that is, the detection of the largest number of 
failures given a specific level of interaction of parameters or arguments that are sent to a method 
(for example a procedure, function or component) [4], [5].

A CA is represented as an matrix and constructed based on the N, k, t, and v values, where N 
is the number of rows (test cases), k is the number of columns in the matrix (number of param-
eters in the method), t represents the level of interaction between the different parameters or 
arguments (for example, if within a method to be tested loops or conditionals involving the same 
level or nested to 2 parameters, the value of t to be used for the test is 2), and v represents the 
number of different symbols or values that each parameter will take in the test (for example if 
you have a parameter that you want to evaluate the values of high, normal, or low, the alphabet 
of that column is of 3 and are represented by the values 0, 1, and 2).

On a CA each sub-array of size N × t contains each tuple of size t symbols at least once. The 
Table 1 shows the CA (N = 11, k = 5, t = 2, v = 3), where each column is made up of elements of 
set Z3 = {0, 1, 2} and strength t = 2 means that the sub-arrays made up of the combinations of 
values of the Z3 alphabet, namely (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), are 
always present in the 10 combinations of two columns (combining 5 in 2 or combining from N in 
t), namely: (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4) and (3, 4), based on 0 for the 
first column. The Table 1 highlights the nonrepeating combinations present for the combination 
of columns 0 and 1. The two unhighlighted combinations are repeated.

Table 1.
Covering Array (CA).

0 1 2 3 4
0 2 2 1 0 1
1 2 1 0 0 0
2 2 0 2 1 1
3 2 0 0 2 2
4 1 2 2 0 2
5 1 2 0 1 0
6 1 1 2 2 1
7 1 0 1 2 0
8 0 2 0 2 1
9 0 1 1 1 2
10 0 0 2 0 0

Source: Authors.
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An MCA is a CA that has in at least one column a different alphabet than the others, this 
causes the definition to be set to MCA (N, k, t, {v1, v2, ..., vk}), where each column defines the 
values that make up each column. If all the alphabets are the same, you are talking about a 
traditional CA, also known as uniform CA or homogeneous CA [6], [7]. The Table 2 shows the 
MCA (N = 12, k = 5, t = 2, v = {4, 3, 3, 2, 2}). In this MCA, the starting column consists of the 
alphabet Z4 = {0, 1, 2, 3}, the next two columns consist of the alphabet Z3 = {0, 1, 2}, and the 
final two columns consist of the alphabet Z2 = {0, 1}.

Table 2.
Mixed Covering Array (MCA).

0 1 2 3 4
0 3 2 1 1 0
1 3 1 2 1 1
2 3 0 0 0 0
3 2 2 2 0 1
4 2 1 1 1 0
5 2 0 0 1 1
6 1 2 1 0 1
7 1 1 0 0 0
8 1 0 2 1 0
9 0 2 0 0 1
10 0 1 2 1 0
11 0 0 1 1 1

Source: Authors.

Considering that CA and MCA are the best alternatives to build combinatorial tests, which in 
turn are the best alternative to building black-box tests, this paper proposes a process of build-
ing MCA by adapting state-of-the-art algorithms seeking to optimize response times without 
losing the quality of the built MCA.

The algorithm consists of two stages, the first that Greedy constructs a matrix that seeks 
to be the basis of the required MCA and the second where this matrix is optimized based on 
an algorithm that uses the heuristic of ascent to the hill and the metaheuristic of simulated 
annealing, the latter performing local optimization based on three ways of defining the neigh-
bors close to the current solution that is optimized, process that is repeated until the maximum 
number of interactions defined for the algorithm is finished or until the required MCA is found.

The rest of the article is organized as follows: in section II the theoretical bases of CA and 
MCA are presented and then the related works in the process of its construction are presented, 
later in section III the proposed algorithm is presented and a synthesis of its functioning, then 
in section IV the experimental results obtained with the algorithm are presented and finally in 
section V the conclusions of the work performed and the future work that is expected to develop 
are presented.

II. Related Works

The central theme of this proposal is black box testing as one of the tools available in the con-
text of software testing, more specifically black box testing, where test cases are generated with 
a combinatorial approach based on the use of a MCA, and especially, the way these arrange-
ments are built.

Building CAs and MCAs is a complex task. In Google Scholar, IEEE, Scopus, ScienceDirect 
and SpringerLink different methods are presented for its construction, namely: exact, algebraic, 
recursive, greedy and metaheuristic [8]. In addition, metaheuristic techniques have produced 
the best results so far and there are a wide variety of metaheuristic algorithms that have been 
used in the construction of CA and MCA [6], such as taboo search [9], simulated annealing 
(Simulated Annealing, SA) [10], genetic algorithms [11], the algorithm by ant colony [12], particle 
swarm optimization [4], the harmonic search [13], the swarm of birds [14], hybrid algorithms 
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combining the bee colony algorithm and harmonic search [15], the cuckoo hunt [15], the dif-
ferential evolution [16], taboo search as a hyper-heuristic proposition [17], and a combination of 
simulated annealing with a greedy algorithm [18], among others.

Despite all these proposals, previous work shows a tendency to use metaheuristics that inte-
grate or rely on simulated annealing with greedy algorithms and variable neighborhoods tak-
ing into account the Table 3 taken from the best results according to Charlie Colbourn (http://
www.public.asu.edu/~ccolbou/src/tabby/catable.html), as they are the ones that report the best 
results. In addition, it was observed that the optimal covering array found by the researchers 
are not shared but must be purchased or established agreements with the authors of the arti-
cles to acquire them. On the other hand, most proposals that build large CAs or MCAs run on 
supercomputers for prolonged periods of time to obtain the optimal number (lowest theoretical 
or known) of rows for each built array. The main and most recent proposals are summarized 
below.

Table 3.
Best Results Algorithms 

K N T Algorithm
4 16 3 Orthogonal array
5 19 3 Derive from strenth3
7 21 3 Simulated annealing
9 22 3 Simulated annealing
10 24 3 Simulated annealing
7 25 4 Simulated annealing
9 26 4 Simulated annealing
12 27 4 Simulated annealing
13 28 4 Simulated annealing
15 29 4 Simulated annealing
6 25 5 Orthogonal array
7 29 5 Fix 1 symbols 
8 33 5 Fix 1 symbols
9 35 5 Simulated annealing
10 36 5 Search taboo
11 37 5 Simulated annealing
13 38 5 Simulated annealing

Source: Authors.

In 2018 a greedy and metaheuristic 3-stage approach was developed for CA construction, 
which has other very important approaches such as complement and post optimization [19]. 
In the first, they use a metaheuristic algorithm and create Covering Perfect Hash Families 
(CPHF), facilitating the construction of large matrices with little computational effort. The 
second stage reviews if the CPHFs are CA, if not they are completed (rows are added) to 
ensure that they are CA and finally in the third stage they are optimized, that is, rows are 
reduced looking for combinations of columns and values that are redundant in the CA. In 
general, the proposal obtained a positive result by reducing and improving a total of 21 217 
CA and the execution time of the algorithm in general is much less than that reported in the 
state of the art.

Also that year (2018) the construction of CA is defined using a simulated annealing (SA) 
based algorithm to create CPHF [20], mentioning that one of the most successful algorithms for 
this work is proposed by UNL, ASU and UVM [21]. In this work, the target covering array is 
divided into smaller matrices or “components”, after which, each component is constructed by 
a combinatorial technique or with SA, if previously there is no such construction [21]. Accord-
ing to this article, metaheuristic algorithms are one of the best solutions to build medium and 
small size CAs most successful, emphasizing simulated annealing as one of the best and most 
used algorithms for this task, due to the relationship between the execution time and the qual-
ity of the solution obtained [21].

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
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For 2019, a new strategy for CA construction was developed based on a greedy algorithm 
and graph theory [22]. That investigation is based on a representation called Node Coverage 
(NC) and the algorithm called Graph Based Greedy Algorithm (GBGA) [22]. This work uses the 
representation through node coverage, to give solution to the construction of CA in the graph 
domain (transformation of a complete NP problem into another complete NP problem, where, 
the second problem is solved and the solution is moved to the first problem), this has made the 
presented algorithm competitive in terms of the generation of CA with the lowest row numbers. 
It should be noted that this method improved the CA and MAC reported in the state of the art 
in 80 of 98 cases [22].

In the year 2020 several CAs were improved through CPHF using a simulated annealing 
algorithm [23]. In this work they managed to improve the upper limits of 19 669 CA, that is, 
they reduced the number of parameters contained in these CAs [23]. These improvements could 
be achieved by restricting the inputs in the groups of rows of these arrays, a better one in the 
local search that consists of replacing the worst column of CPHF with a better solution found 
by the algorithm, this method shows its improvements in the creation of CA compared to that 
of 2018 [19].

Colbourn, one of the most important authors on the subject, makes available to the public a 
repository with a wide list of CA configurations and the optimal values (theoretical or known) of 
its rows, but does not make available the CAs themselves (http://www.public.asu.edu/~ccolbou/
src/tabby/catable.html). In this repository it can be observed that for CA with k< = 6 the meta-
heuristic algorithms that produce better CA are based on simulated annealing and have greedy 
approaches.

III. Proposed MCA Generator

In this paper, a generic algorithm is presented that constructs mixed covering arrays with 
acceptable characteristics reducing the response time, consequently with what the current 
software development market demands [24]. Specifically, this solution was arrived at in accor-
dance with the results released by the NIST - National Institute of Standards and Technology 
(Fig. 1), where it could be determined that most of the errors or failures in the software are 
caused by the interaction (strength, parameter t of a MCA) of two, three, four, five or maximum 
six components. Considering the above, the simulated annealing algorithm was selected as the 
best option since it is more frequently found as a generator tool of the lower limits of covering 
arrays of dimensions not above the MCA configuration (k = 6, t = 6, v = 6).

Fig. 1. Coverage of NIST software testing.
Source: Taken from https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software.

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
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Next, the components of the proposed algorithm are described as the basis not only of simu-
lated annealing, but also of the ascent to the hill, a greedy initialization, and the use of three 
methods to define neighboring solutions to the one being optimized, also the order of execution 
of the steps established in the Generation algorithm is described.

A. Primary Algorithm

The Fig. 2 summarizes this algorithm, which is a descent of the hill because it was designed 
to minimize. The algorithm receives as input the parameters of the MCA that you want to build, 
the maximum number of iterations that will be performed within this algorithm and the maxi-
mum number of iterations that will be performed in simulated annealing, then (line 2) initial-
izes a solution of that MCA with a greedy algorithm, which gets a matrix that approaches the 
required MCA and calculates the fitness of that solution.

Fig. 2. Primary Algorithm.
Source: Authors.

Fitness refers to the number of t-ads it needs (combinations of values in combinations of col-
umns) to the matrix to be the required MCA. Then in an iterative process (lines 3 to 10) ask 
first if the solution to the required MCA (line 4) has already been found if this is the case, oth-
erwise make a copy of the matrix and its fitness and seek to optimize the copy using Simulated 
Annealing for a maximum number of iterations or cycles (line 6).

If the result of the optimization process is better, in this case it seeks to minimize the value 
of fitness until it reaches zero (line 7), then the matrix and its fitness is replaced by the best 
new solution found. At the end (line 11) the matrix is returned and its fitness, if the fitness is 
zero the matrix corresponds to the required MCA otherwise it is not, i.e. it lacks t-ads to become 
the required MCA and this can be tried to solve in two ways, if the MCA can be found with the 
number N of rows requested, the number of interactions should be increased (maxiter and max-
iterSA), if not, the algorithm should be run with a greater number of rows, for example, N + 1.

On line 2 of the Fig. 2, where Greedy is used, the algorithm summarized in the Fig. 3. This 
method on line 3 generates a row or row of the required MCA randomly considering the alpha-
bets of each column (parameter) and copies it into the matrix which will eventually return. Then 
in the loop between lines 4 and 9 it looks to generate a set of random lines (the size of this set 
depends on a parameter called candidate size or cansize) based on the alphabet of the columns, 
then looks at which is the most different from the lines already copied in the matrix and the 
most different is copied in the matrix. After the process is finished, a matrix of N × k is obtained 
which is returned to the main algorithm and corresponds to the initial matrix that is expected 
to be optimized. Unless the required MCA is quite easy to obtain, this initial matrix does not 
match the required MCA.

The process of fitness calculation involves recording in a matrix, which is called a P-Matrix 
(an example of this matrix is shown below), where you have at the row level the combinations 
of columns according to the number of columns and the strength of the MCA, at the column 
level the combinations of values according to the alphabet of the columns and in the contents 
of each cell the times that these combinations of columns and combinations of values appear. 
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If all cells in this matrix have a value ≥ 1, the required MCA is already present, i.e., no t-ada 
is missing. Otherwise, the fitness value of that matrix corresponds to the number of missing 
t-ads in the P-Matrix.

Fig. 3. Greedy Algorithm for Matrix Initialization.
Source: Authors.

B. Simulated Annealing based algorithm

This algorithm is summarized in the Fig. 4. The algorithm receives from the main algorithm 
the configuration of the required MCA, the m1-matrix and the f1 fitness of that matrix and the 
maximum number of iterations to be performed in the execution of simulated annealing. In lines 
2 to 10 are included the optimization iterations, in each one of them it starts by calculating the 
temperature that at the beginning is high (one) and decreases linearly in each iteration to almost 
zero. Then, a copy of the matrix and its fitness is made on line 4. These copies are passed to the 
local optimization phase that is performed on line 5 by running one of three neighborhood motion 
algorithms (Algorithm1, Algorithm2 and Algorithm3) which are performed based on p1, p2 and 
p3 probabilities, respectively.

Fig. 4. Simulated Annealing based algorithm.
Source: Authors.

These probabilities must be refined according to an experimental process; to date the best val-
ues found are p1 = 0.5, p2 = 0.3 and p3 = 0.2. Already with the m2-matrix modified according to 
the logic of one of these three algorithms the fitness value is calculated, if this new fitness (f2) is 
better (lower value) than that of f1 or according to the equation of Boltzmann raised in the simu-
lated annealing is a little less good but acceptable as a strategy to get out of local optimum (line 6), 
this new solution replaces the current (line 7). It should be clarified that in line 6, the Rnd value 
corresponds to a pseudo-random number between zero and one. If the required CSF is already 
found, the iterative cycle (line 9) is broken. At the end, the m1-matrix returns and its fitness f1.
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C. Algorithm1

This proposed algorithm has three main steps:

1. Calculates the row that contributes least to the matrix, considered the worst row.
2. A matrix named U is constructed that allows you to identify missing combinations and 

construct a row that is expected to contribute more to the solution than the worst row.
3. Finally, fitness is recalculated with the set change and if this improves the row is replaced.

In step 1 the m2-matrix is taken as input and the worst row is calculated based on the 
process of creating or updating the P-Matrix. The worst row is set according to a punish-
ment counter per row, which considers the number of extra occurrences contained in that 
row, i.e., a row that has two or more repeated combinations does not contribute to the goal 
of the covering array, this row will be replaced by a better one, calculated according to the 
next step.

For step 2, the U-Matrix is created according to the number of missing combinations deter-
mined in the P-Matrix. The following is an example of the process from the m2-matrix shown 
in the Fig. 5. This figure includes a column called a punishment that is incremented each time 
the algorithm that computes the P-Matrix encounters a repeating combination. For example, 
the last row, (0, 0, 0), is 3 times repeated, that is, the combination of values in columns (0, 1), 
(0, 2), and (1, 2) that are the same as in the first row.

Fig. 5. m2-matrix with punishment column per row.
Source: Authors.

The P-Matrix shown in the Fig. 6 shows that there are 4 missing t-ads (zeros in green cells) 
and 5 repeated t-ads (values greater than one in green cells).

Fig. 6. P-Matrix corresponding to the m2-matrix previously shown.
Source: Authors.

Based on the information presented in the Fig. 6, a summary of missing data is constructed 
and presented in the Fig. 7. It’s interpreted like this. The first row in the first column says 0 
2, this means that at the crossing of row 0 of P-Matrix that corresponds to the combination 
of columns 0 1 and column 2 of the P-Matrix that corresponds to the set of missing values 1 0 
there is a zero (a missing t-ada). The other rows are read in the same way.
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Fig. 7. Data pulled from P-Matrix.

Source: Authors.

To construct the U-Matrix, the blue column of the missing data summary (Fig. 7) and 
you see that column 0 is in all the rows and the first value of the final column in those rows 
is (1 2 1 2), this becomes the first row of U-Matrix. Then you take column 1 which is in the 
first two rows of the summary and on the right side you see that the missing values are (0 0) 
which becomes the second row of U-Matrix and finally you take column 2 and on the right 
side the missing values are (0 1) and become the third row of U-Matrix (Fig. 8). In this sense, 
the U-Matrix is constituted by the columns of the m2-matrix that require combinations, and 
by the value that they require.

According to the U-Matrix it is known that for column 1 the missing values are mostly 0 
so its mode is 0, for columns 0 and 2 the algorithm approximates the mode to the largest near 
value, in this case 2 and 1, respectively.

 
Fig. 8. U-Matrix, most missing values to cover for each MCA column.

Source: Authors.

Finally, the third step is executed, which corresponds in changing the worst row for the 
constructed or optimized row (Fig. 9), and then proceed to recalculate the P-Matrix.

Fig. 9. Row change in m2-matrix per optimized row.
Source: Authors.

When recalculating the P-Matrix (Fig. 10), it can be observed that there are still 2 t-ads 
missing, but with the change made it was possible to reduce 2 t-ads, since originally 4 were 
missing.
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Fig. 10. P-Matrix calculated with the new m2-matrix.
Source: Authors.

D. Algorithm2

This algorithm first defines the number of zeros in the P-Matrix and the characteristics of 
these zeros (their combinations of columns with their missing values), then selects a combina-
tion that will try to solve, that is, at the end of the process stop being zero in the P-Matrix. To 
achieve this, for each of the rows of m2 selected in random order the selected combination of 
columns and missing values is forced to be placed there and its fitness is calculated. Changes 
to the line are rolled back so that the calculations in the following lines are not affected.

At the end, the line in which the change obtains the best fitness (lower value of missing 
t-ads) is selected. If the fitness improved in relation to the original is returned that line, other-
wise a Shake operation () is performed on that best line, which consists of making a change to 
a randomly selected column of the line, this change is made to complement the value it has in 
relation to its maximum alphabet, for example, if the maximum alphabet is 4 and the current 
value is 3, the resulting value will be 1 (4 - 3).

Below is an example of the algorithm to clarify its operation. Starting from the m2-matrix 
presented in the Fig. 5, and their respective P-Matrix presented in the Fig. 6, where beforehand 
you know that your fitness is 4. When you enter algorithm 2, you initially randomly select one 
of the zeros (0) in the P-Matrix, for example, the number 1 in the list (Fig. 11).

Fig. 11. Array with the list of zeros in the P-Matrix.
Source: Authors.

Subsequently, a row of the m2-matrix is selected randomly, in this case row 4 (starting with 
base index 0 for the rows), to which some modifications will be made. According to the coordi-
nates of the P-Matrix of the selected zero, you can know which columns (0 1) and which values 
(2 0) are needed to cover (Fig. 12). This information changes the selected line from (0 0 1) to 
(2 0 1). That is, column 0 was assigned the value 2, and column 1 was assigned the value 0. 

Fig. 12. Missing values according to P-Matrix.
Source: Authors.
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As result, m2 remains as seen in the Fig. 13 and its P-Matrix as shown in the Fig. 14. It is evi-
dent that this change causes 2 missing t-ads to be solved and that the fitness of this solution 
drops from 4 to 2. This process is repeated with the rest of the lines of the m2-matrix and at 
the end the change that further decreases the value of fitness is selected. If fitness cannot be 
reduced, Shake (or) is applied.

Fig. 13. m2-matrix with change of line 4.
Source: Authors.

Fig. 14. P-Matrix after applying algorithm2.
Source: Authors.

E. Algorithm3

This algorithm initially randomly selects a row (row) of m2, a copy is made to that row 
to have it in its original form, then the row for each of its columns is evaluated as change 
fitness if each of the other options of the alphabet of such column, if there is a change that 
has a better fitness, this is kept on the solution and advanced to the next column, otherwise, 
the original value of the column is left in the row. At the end, they can change zero, one or 
even the columns of the line, but when no change is made a Shake operation () is done on 
the line.

Starting from the m2-matrix (Fig. 5) and its corresponding P-Matrix (Fig. 6), you can see 
that the fitness of m2 is 4 so it needs to be improved. If you select the algorithm 3, first you 
randomly choose a line, in this case line 4 (Fig. 15).

Fig. 15. Random selection of a line in the m2-matrix.
Source: Authors.
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The algorithm takes that line and initially changes the value of the first column, as that 
column have alphabet 3, try with the values 1 and 2 and not 0 since that is already assigned 
in the column. Evaluate fitness with a value of 1 and then evaluate fitness with a value of 2. 
If there is improvement in fitness the value with which greater improvement was achieved is 
preserved and continued with the next column which in this case also has a value of 0 and then 
with the last column which already has a value of 1. In this example, the vector at the end is 
left with the values (2 0 1). The Fig. 16 shows the m2-matrix resulting from the change made 
by algorithm 3 and the Fig. 17 displays the P-Matrix result of the change. This algorithm also 
reduces 2 missing t-ads.

Fig. 16. m2-matrix after applying algorithm3.
Source: Authors.

Fig. 17. P-Matrix after applying algorithm3.
Source: Authors.

As can be seen with the examples, the three algorithms allow to improve fitness using dif-
ferent strategies and the results depend on the solution (m2 matrix) being processed, the dif-
ficulty of the required MCA and the chance in algorithms 2 and 3.

IV. Analysis and Results

To evaluate the proposed algorithm a set of tests was designed that executes the algorithm and 
asks it to generate a total of 142 MCA configurations with k = 6, t = 2, N = 50 and alphabets 
ranging from v (3, 2, 2, 2, 2, 2) to v (6, 6, 3, 3, 2, 2) going through the possible combinations 
in that interval.

A. Tuning the Odds

To establish the appropriate execution percentages for the operation of the algorithms that 
define a possible better neighbor, the proposed algorithm was executed by modifying the per-
centages according to the values presented in the Table 4.

As evidenced in the table of results and according to the response time and number of 
rows, the best results were selected for the operation of the generation algorithm that in 
this case corresponds to those obtained with the configuration of test 2, where it is appre-
ciated that the deterministic algorithm (algorithm 1), considerably optimizes the response 
time which translates into a considerable reduction in the consumption of computational 
resources, but that its value cannot be very high because it slightly increases the number 
of rows in the MCA.
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Table 4.
Test set with different probabilities.

Test Algorithm1 Algorithm2 Algorithm3 Rows average Time Average

1 10% 60% 30% 27.6 34.8

2 50% 30% 20% 27.8 14.2

3 70% 20% 10% 28.2 15.1

4 10% 20% 70% 27.4 23.0

5 0% 70% 30% 27.8 32.0

6 33% 33% 33% 28.1 16.6

Source: Authors.

B. Comparison with Colbourn results

In this section, the results obtained in terms of Number of rows (N) per CSF obtained with 
the proposed algorithm were compared with the results reported in the Charlie Colbourn reposi-
tory to determine the quality of these. It should be noted that this repository contains the best 
results reported so far by a wide range of state of the art algorithms, not a single algorithm. 
The results are shown in the Table 5.

Table 5.
Comparison of Results Against Colbourn.

Columns Strength Alphabet Rows Rows (Colbourn) Δ Delta

4 2 3, 3, 3, 3 9 9 0

5 2 3, 3, 3, 3, 3 11 11 0

7 2 3, 3, 3, 3, 3, 3, 3, 3 13 12 1

9 2 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 15 13 2

10 2 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 15 14 1

5 2 4, 4, 4, 4, 4 16 16 0

6 2 4, 4, 4, 4, 4, 4 19 19 0

7 2 4, 4, 4, 4, 4, 4, 4, 4 23 21 2

9 2 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 25 22 3

6 2 5, 5, 5, 5, 5, 5, 5 33 25 8

7 2 5, 5, 5, 5, 5, 5, 5, 5 35 29 6

8 2 5, 5, 5, 5, 5, 5, 5, 5, 5 38 33 5

9 2 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 39 35 4

10 2 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 41 36 5

3 2 6.6.6 36 36 0

4 2 6, 6, 6, 6 38 37 1

5 2 6, 6, 6, 6, 6 43 39 4

6 2 6, 6, 6, 6, 6, 6 48 41 7

8 2 6, 6, 6, 6, 6, 6, 6, 6, 6 54 42 12

9 2 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 56 46 10

10 2 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 60 48 12

Percentage 31.7619 27.8095 3.9523

Source: Authors.

As can be seen in the Table 5, there is a difference between the number of rows of the Colbourn 
repository with which it was possible to generate with the algorithm proposed in this work, which 
on average increased by 4 lines (http://www.public.asu.edu/~ccolbou/src/tabby/catable.html). 

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
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However, the result is not so high considering that the data of the arrangements provided by the 
Colbourn repository yields the best possible results and each one of them is built with different 
algorithms, specialized in finding the best possible solution to that particular arrangement, on 
the contrary, the algorithm proposed in this work serves general purposes, different values of 
k, t and alphabets.

V. Conclusions

According to the research carried out, it is clear the importance of quality analysis to be per-
formed on software and hardware products, contributing to the constant improvement of the 
methods that can facilitate this work contributes on different fronts to the construction of 
better tests and better tools for developers, therefore, in this work focused efforts on improv-
ing the performance of the proposed algorithms taking into account the needs of the market, 
since a rapid response means savings in processing capacity and time, which in the end will 
directly impact on the quality of software or hardware products.

During the development of this proposal, important aspects were found along the way that 
could lead to related work, focused on the MCA, which continue to contribute to the constant 
growth of the improvement of the tests, in this case it is considered the option of building a 
third stage that from an already built array can extract one of smaller dimensions without 
clearly affecting the coverage of this, in order to further optimize the response time of the 
system.

The greedy and metaheuristic approach allowed to find an appropriate balance between 
the quality of the results and the execution time required for the construction of the MCA 
(Table 5). The process of tuning parameters is crucial for the use of the algorithm since the 
results show execution times that are different. Other neighborhood-building mechanisms 
that allow better MCAs (fewer rows) while keeping response times (execution times) low need 
to be further explored.

As for the experimental results concerning the generation of MCA are considered to be gen-
erally good according to their ranks with respect to the best of the state of the art (Table 5) 
since the objective of the research was to adapt the solutions found in the state of the art to 
a generic algorithm that can be used as an input for different purposes oriented to the needs 
of the current market. Finally, the importance and contribution of related works that were of 
major influence to guide the development of this research is highlighted.

As a future work is expected to integrate this algorithm in a web solution of generation of 
test cases based on microservices that is already developed and that also has a post optimiza-
tion algorithm where the response time is prioritized, and the algorithm presented here seeks 
to serve to fill an initial repository and generate on demand new MCA required by users of 
the solution.
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