
39

Revista Inge Cuc, Vol. 9, N° 2, pp 39-43, Diciembre, 2013

Aproximación de la Dinámica Inversa
de un Manipulador Robótico mediante
una Red Neuronal entrenada con un
Algoritmo Estocástico de Aprendizaje

On the Approximation of the Inverse Dynamics
of a Robotic Manipulator by a Neural Network
Trained with a Stochastic Learning Algorithm

Artículo de Investigación Científica - Fecha de Recepción: 27 de Septiembre de 2013 - Fecha de Aceptación: 17 de Noviembre de 2013

Enrique Carlos Segura
Doctor en Ciencias Matemáticas, Universidad de Buenos Aires. Buenos Aires, Argentina. esegura@dc.uba.ar

Para citar este artículo / To reference this article:
E. C. Segura, “On the Approximation of the Inverse Dynamics of a Robotic Manipulator by a Neural Network Trained
with a Stochastic Learning Algorithm”, INGE CUC, vol. 9, no. 2, pp. 39–43, 2013.

Resumen: Se utiliza el algoritmo SAGA para
aproximar la dinámica inversa de un manipula-
dor robótico con dos juntas rotacionales. SAGA
(Simulated Annealing + Gradiente + Adapta-
ción) es una estrategia estocástica para la cons-
trucción aditiva de una red neuronal artificial
de tipo perceptrón de dos capas, basada en tres
elementos esenciales: a) actualización de los pe-
sos de la red por medio de información del gra-
diente de la función de costo; b) aceptación o re-
chazo del cambio propuesto por una técnica de
recocido simulado (simulated annealing) clási-
ca; y c) crecimiento progresivo de la red neuro-
nal, en la medida en que su estructura resulta
insuficiente, usando una estrategia conserva-
dora para agregar unidades a la capa oculta.
Se realizan experimentos y se analiza la eficien-
cia en términos de la relación entre error rela-
tivo medio -en los conjuntos de entrenamien-
to y de testeo-, tamaño de la red y tiempos de
cómputo. Se hace énfasis en la habilidad de la
técnica propuesta para obtener buenas aproxi-
maciones, minimizando la complejidad de la ar-
quitectura de la red y, por lo tanto, la memoria
computacional requerida. Además, se discute la
evolución del proceso de minimización a medi-
da que la superficie de costo se modifica.

Palabras clave: red neuronal, manipulador ro-
bótico, perceptrón multicapa, aprendizaje es-
tocástico, dinámica inversa.

Abstract: The SAGA algorithm is used to ap-
proximate the inverse dynamics of a robotic
manipulator with two rotational joints. SAGA
(Simulated Annealing Gradient Adaptation) is
a stochastic strategy for additive construction
of an artificial neural network of the two-layer
perceptron type based on three essential ele-
ments: a) network weights update by means
of the information from the gradient for the
cost function; b) approval or rejection of the
suggested change through a technique of clas-
sical simulated annealing; and c) progressive
growth of the neural network as its struc-
ture reveals insufficient, using a conservative
strategy for adding units to the hidden layer.
Experiments are performed and efficiency
is analyzed in terms of the relation between
mean relative errors -in the training and test-
ing sets-, network size, and computation time.
The ability of the proposed technique to per-
form good approximations by minimizing the
complexity of the network’s architecture and,
hence, the required computational memory, is
emphasized. Moreover, the evolution of mini-
mization processes as the cost surface is modi-
fied is also discussed.

Keywords: neural network, robotic manipula-
tor, multilayer perceptron, stochastic learn-
ing, inverse dynamics.

40

Aproximación de la Dinámica Inversa de un Manipulador Robótico mediante
una Red Neuronal Entrenada con un Algoritmo Estocástico de Aprendizaje

I.	 Introduction

One of the best known features of the classical Sim-
ulated Annealing (SA) and, at the same time, more
often referenced in the literature [6], [8], [11], [13],
[15] is its ability to provide, in complex optimization
problems (i.e. domains with many variables and
cost function with many local minima and high-val-
ued derivatives), good “coarse” approximations, i.e.,
approach to an optimal or sub-optimal solution in
reasonable times. In opposition, the SA frequently
fails or results very slow at the “fine tune”, i.e., the
accurate detection of the desired optimal value. On
the other hand, gradient-based minimization (op-
timization) algorithms (and, in the particular case
of neural networks, the Error Backpropagation al-
gorithm [12], [4]) are commonly unable to escape
a local minimum but very suitable to get the exact
minimum, provided that its basin of attraction has
been previously located. In this way, the idea of a
hybrid algorithm which combines cooperatively the
good properties of both approaches arises naturally.

The other element that we intend to include is
related to architecture optimality. There exist well
studied [2], [3] minimal conditions that must be
imposed on the structure of a feedforward neural
network in order to assure its universality as a con-
tinuous functions approximator. Taking that into
account, a mechanism for adding processing units
was incorporated to the network learning strategy,
so as to make the system able to obtain structures
of minimal or quasi-minimal complexity to approx-
imate with acceptable errors the objective function.

On the base of all these elements we proposed the
SAGA algorithm (Simulated Annealing + Gradient
+ Adaptation). A preliminary version of such a tech-
nique has already been successfully applied to the
problem of video camera calibration for autonomous
robots [10], [14].

II.	 Toward A Simple Structure

Many researchers have looked for reducing wide
classes of mathematical functions to simple combi-
nations of simple functions. One of the first prece-
dents is that of Kolmogorov [7] who (apparently)
far from connectionist thinking, proved the (exact)
representability of any continuous function in many
variables by means of sums and compositions of
one-variable function. This result, as well as several
other some years after [1],[16], may be translated, in
neural networks terms, as the demonstration that
any continuous function can be represented as a
three layer neural network (although what Kolmog-
orov intended was, in fact, to answer negatively the
thirteenth Hilbert’ problem). But these results are
presented in a fully non-constructive way.

Since then, many researchers worked on this sub-
ject. In 1989, two mathematicians proved, almost si-

multaneously, that three layer perceptrons (i.e. one
hidden layer) with sigmoid activation functions in
the hidden units can approximate, to an arbitrarily
small error, in any Lp metrics, an arbitrary contin-
uous function [2],[3]. Here we present the result in
the version given in [3].

Theorem (Funahashi)

Let Φ be a monotonic increasing and bounded func-
tion, C є RN a compact set, f : C RL a continuous
function. For any arbitrary ε > 0, there exist K є N
and real numbers Wij, uj (j = 1,...,K ,i = 1,...,L) and
wjk (j = 1,...,K ;k = 1,...,N) such that if

then

This result also holds for any Lp metric (p≥2),
particularly the quadratic (p=2). More recent re-
sults [5], [9] have precised as a necessary and suf-
ficient condition on f that it be not a polynomial.

The resulting neural network will take the form
depicted in figure 1. Activation is sigmoidal for hid-
den units and linear for input and output units.

From now on, we will consider (without any loss
of generality) the case of a single output. Then, the
parameter set becomes simply .

The idea of obtaining, with the cheapest possible
structure, approximations of a certain utility, is in-
spired in this fact. The algorithm we will propose
performs,

specifically, a simple strategy -¿the simplest?- for
the addition of hidden units.

O1 O2 LO

Wij

1V V2 VK
w jk

ξ1 ξ ξ2 N

Figure 1. The basic structure of a three
layer perceptron (one hidden layer)

Source: Author’s own research.

41

Revista Inge Cuc, Vol. 9, N° 2, pp 39-43, Diciembre, 2013

III.	The Algorithm

A brief sketch of the SAGA algorithm would be as
follows (with /* and */ enclosing comments).

•	 Get a training (TRS) and a testing (TES) sets
from f (with a single output variable)

•	 Initialize the net at random with a proper
initial number K of hidden units

/*

*/

•	 While t < tmax

/* or or */

 {

 T ← T(t); /* tipically T(t) = A/log(1+t) */

 propose_change (W,W*);

 generate p ≈ U(0,1)

 If exp{-Δ/T} > p; /* */

 W ← W*;

 Else

 rejections++;

 If rejections > tol and K< Kmax

 add(W,K);

 t++;

 }

 propose_change (W,W*)

 {

 Choose x є TRS at random;

 Choose r ≈ U(0,R);

/* R maximum step fixed heuristically */

/*Ex (W) term of the error

 function due to x */

 }

add (W,K)

 {

 K++; /* creates a new hidden unit */
 Choose m between 1 and K-1; 	

 /* tipically m such that
 is maximized */

 rejections ← 0;
 }

Although the algorithm looks highly parameter-
ized, relevant parameters are three: one for the cool-
ing schedule of the SA, the maximum step R and the
tolerance value (tol) which, if overcome by the num-
ber of consecutive rejections, calls the routine which
adds a hidden unit to the net (it increases in N+2 the
dimension of the weight space, but preserving the
error obtained up to that moment).

IV.	An Application

We applied SAGA to the approximation of the in-
verse dynamics of a manipulator with two degrees
of freedom. Given a control scheme as shown in fig.
2, where y(t) is the output at time t, y*(t) the desired
output and u(t) the control signal, we are interested
in modelling the inverse application: what should
have been the control signal in order to obtain the
desired output. In our case, the inverse model re-
lates accelerations y in the joints with torques
and to be applied (voltages on the motors), given
angular positions and and velocities and .

Figure 2. Control scheme with an inverse model
Source: Author’s own research.

Although an analytic expression for such in-
verse is well known ((1) and (2)), it does not repre-
sent an exact model of the dynamics for any real
manipulator, which should be modelled on the base
of measurements on the plant. Anyhow, in order to
evaluate our method, simulations were performed
using such equations (where li and mi are, respec-
tively, the length and the mass of link i).

42

Aproximación de la Dinámica Inversa de un Manipulador Robótico mediante
una Red Neuronal Entrenada con un Algoritmo Estocástico de Aprendizaje

V.	 Experiments

SAGA was applied to the function
on the domain of R6 defined by ,

 and with l1= 0.4 m.,
l2= 0.2 m., m1=1 kg. and m2= 0.5 kg. The neural net
has the form

for i = 1,2, being and

Here we show some results obtained for the case of
. Figure 3 shows the evolution of the mean relative

error for independent training sets. Good results can
be observed for 300 (6.6 %) and for 400 examples (7.4
%). Figure 4 shows, for the same sets, the evolution
of the training error as new units were added to the
hidden layer. Fixing a limit of 30 units, the approx-
imations reported above are obtained. However, it
must be emphasized that not always a larger number
of examples produces a larger approximation error.
For example, if we had stopped the process at 20 000
iterations (figure 3) or at a maximum of 12-14 hid-
den units (figure 4), clearly it would have resulted
more successful for the set of 400 examples. Anyhow,
it is worth noting the great economy and simplicity
of the resulting net structure. Figure 5 presents, for
the same set of 400 examples, and a testing set of
1500 examples, the time evolution of both errors (al-
ways mean and relative). Here is clearly illustrated
the overtraining phenomenon: from the 50 000 iter-
ations on, the testing error grows up, which suggests
that the useful stage of the process is over.

Figure 3. Training error (mean relative) vs. time (x1000 iterations)

Source: Author’s own research.

Figure 4. Training error (mean relative) vs. nr. of hidden units

Source: Author’s own research.

Figure 5. Training and testing errors vs. time (x 1000 iterations)

Source: Author’s own research.

(1)

(2)

VI.	Conclusions

A stochastic technique for the construction of two-lay-
er perceptron type ANN’s was presented. It provides
good approximations of any continuous function by
means of very simple architectures and a minimal or
quasi-minimal number of processing units.

43

Revista Inge Cuc, Vol. 9, N° 2, pp 39-43, Diciembre, 2013

The proposal was tried in the case of the inverse dy-
namics of a robotic manipulator with two degrees of
freedom (rotational joints), which implied the approxi-
mate modelization of a function with six input and two
output variables. Although the obtained results can be
considered very good, it would be interesting to extend
the experiments to more degrees of freedom, as well as
to testing and training sets with higher cardinality. As
for the domain over which we worked, it may be consid-
ered close enough to a real case.

References

[1]	 V. I. Arnold, “On Functions of three Variables”, Dokl.
Akad. Nauk, no.114, pp. 679-681, 1957.

[2]	 G. Cybenko, “Approximation by superpositions of a sig-
moidal function”, Math. Control, Signals and Systems,
vol.2, no.4, pp. 303-314, 1989.

[3]	 K. Funahashi, “On the approximate realization of con-
tinuous mappings by neural networks”, Neural Net-
works, vol.2, no.3, pp. 183-92, 1989.

[4]	 S. Haykin, Neural Networks and Learning Machines.
Upper Saddle River, Pearson-Prentice Hall, 2009.

[5]	 Y. Ito, “Extension of Approximation Capability of Three
Layered Neural Networks to Derivatives”, Proc. IEEE
Int. Conf. Neural Networks, San Francisco, 1993, pp.
377-381.

[6]	 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimi-
zation by Simulated Annealing”, Science, vol. 220, pp.
671-680, 1983.

[7]	 A. N. Kolmogorov, On the Representation of Functions
of Many Variables by Superposition of Continuous Func-

tions of one Variable and Addition (1957), Am. Math.
Soc. Tr., vol.28, pp. 55-59, 1963.

[8]	 P. J. Van Laarhoven and E. H. Aarts, Simulated An-
nealing: Theory and Applications. Dordrech: Kluwer,
2010.

[9]	 M. Leshno, V. Y. Lin, A. Pinkus and S. Schocken,
“Multilayer Feedforward Networks with a Nonpoly-
nomial Activation Function Can Approximate Any
Function”, Neural Networks, vol.6, no 6, pp. 861-867,
1993.

[10]	 A. B. Martínez, R. M. Planas, and E. C. Segura, “Dis-
posición anular de cámaras sobre un robot móvil”, en
Actas XVII Jornadas de Automática Santander96,
Santander, 1996.

[11]	 N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. H.
Teller, and E. Teller, “Equation of State Calculations
by Fast Computing Machines”, J. Chem. Phys, vol. 21,
no 6, pp. 1087-91, 1953.

[12]	 D. E. Rumelhart, G. E Hinton, and R. J. Williams,
“Learning representations by back-propagating er-
rors”, Nature no.323, pp. 533-536, 1986.

[13]	 P. Salamon, P. Paolo Sibani, and R. Frost, Facts, Con-
jectures and Improvements for Simulated Annealing.
SIAM Monographs on Mathematical Modeling and
Computation, 2002.

[14]	 E. C. Segura, A non parametric method for video cam-
era calibration using a neural network, Int. Symp.
Multi-Technology Information Processing, Hsinchu,
Taiwan, 1996.

[15]	 E. C. Segura, Optimisation with Simulated Annealing
through Regularisation of the Target Function, Proc.
XII Congreso Arg. de Ciencias de la Computación, Po-
trero de los Funes, 2006.

[16]	 D. A. Sprecher, “On the Structure of Continuous
Functions of Several Variables”, Tr. Am. Math. Soc.,
vol.115, pp. 340-355, 1963.

