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Resumen: Se utiliza el algoritmo SAGA para 
aproximar la dinámica inversa de un manipula-
dor robótico con dos juntas rotacionales. SAGA 
(Simulated Annealing + Gradiente + Adapta-
ción) es una estrategia estocástica para la cons-
trucción aditiva de una red neuronal artificial 
de tipo perceptrón de dos capas, basada en tres 
elementos esenciales: a) actualización de los pe-
sos de la red por medio de información del gra-
diente de la función de costo; b) aceptación o re-
chazo del cambio propuesto por una técnica de 
recocido simulado (simulated annealing) clási-
ca; y c) crecimiento progresivo de la red neuro-
nal, en la medida en que su estructura resulta 
insuficiente, usando una estrategia conserva-
dora para agregar unidades a la capa oculta. 
Se realizan experimentos y se analiza la eficien-
cia en términos de la relación entre error rela-
tivo medio -en los conjuntos de entrenamien-
to y de testeo-, tamaño de la red y tiempos de 
cómputo. Se hace énfasis en la habilidad de la 
técnica propuesta para obtener buenas aproxi-
maciones, minimizando la complejidad de la ar-
quitectura de la red y, por lo tanto, la memoria 
computacional requerida. Además, se discute la 
evolución del proceso de minimización a medi-
da que la superficie de costo se modifica.

palabras clave: red neuronal, manipulador ro-
bótico, perceptrón multicapa, aprendizaje es-
tocástico, dinámica inversa.

Abstract: The SAGA algorithm is used to ap-
proximate the inverse dynamics of a robotic 
manipulator with two rotational joints. SAGA 
(Simulated Annealing Gradient Adaptation) is 
a stochastic strategy for additive construction 
of an artificial neural network of the two-layer 
perceptron type based on three essential ele-
ments: a) network weights update by means 
of the information from the gradient for the 
cost function; b) approval or rejection of the 
suggested change through a technique of clas-
sical simulated annealing; and c) progressive 
growth of the neural network as its struc-
ture reveals insufficient, using a conservative 
strategy for adding units to the hidden layer. 
Experiments are performed and efficiency 
is analyzed in terms of the relation between 
mean relative errors -in the training and test-
ing sets-, network size, and computation time. 
The ability of the proposed technique to per-
form good approximations by minimizing the 
complexity of the network’s architecture and, 
hence, the required computational memory, is 
emphasized. Moreover, the evolution of mini-
mization processes as the cost surface is modi-
fied is also discussed.

Keywords: neural network, robotic manipula-
tor, multilayer perceptron, stochastic learn-
ing, inverse dynamics.
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i. introduCtion

One of the best known features of the classical Sim-
ulated Annealing (SA) and, at the same time, more 
often referenced in the literature [6], [8], [11], [13], 
[15] is its ability to provide, in complex optimization 
problems (i.e. domains with many variables and 
cost function with many local minima and high-val-
ued derivatives), good “coarse” approximations, i.e., 
approach to an optimal or sub-optimal solution in 
reasonable times. In opposition, the SA frequently 
fails or results very slow at the “fine tune”, i.e., the 
accurate detection of the desired optimal value. On 
the other hand, gradient-based minimization (op-
timization) algorithms (and, in the particular case 
of neural networks, the Error Backpropagation al-
gorithm [12], [4]) are commonly unable to escape 
a local minimum but very suitable to get the exact 
minimum, provided that its basin of attraction has 
been previously located. In this way, the idea of a 
hybrid algorithm which combines cooperatively the 
good properties of both approaches arises naturally.

The other element that we intend to include is 
related to architecture optimality. There exist well 
studied [2], [3] minimal conditions that must be 
imposed on the structure of a feedforward neural 
network in order to assure its universality as a con-
tinuous functions approximator. Taking that into 
account, a mechanism for adding processing units 
was incorporated to the network learning strategy, 
so as to make the system able to obtain structures 
of minimal or quasi-minimal complexity to approx-
imate with acceptable errors the objective function.

On the base of all these elements we proposed the 
SAGA algorithm (Simulated Annealing + Gradient 
+ Adaptation). A preliminary version of such a tech-
nique has already been successfully applied to the 
problem of video camera calibration for autonomous 
robots [10], [14].

ii. toward a SimPle StruCture

Many researchers have looked for reducing wide 
classes of mathematical functions to simple combi-
nations of simple functions. One of the first prece-
dents is that of Kolmogorov [7] who (apparently) 
far from connectionist thinking, proved the (exact) 
representability of any continuous function in many 
variables by means of sums and compositions of 
one-variable function. This result, as well as several 
other some years after [1],[16], may be translated, in 
neural networks terms, as the demonstration that 
any continuous function can be represented as a 
three layer neural network (although what Kolmog-
orov intended was, in fact, to answer negatively the 
thirteenth Hilbert’ problem). But these results are 
presented in a fully non-constructive way.

Since then, many researchers worked on this sub-
ject. In 1989, two mathematicians proved, almost si-

multaneously, that three layer perceptrons (i.e. one 
hidden layer) with sigmoid activation functions in 
the hidden units can approximate, to an arbitrarily 
small error, in any lp metrics, an arbitrary contin-
uous function [2],[3]. Here we present the result in 
the version given in [3].

Theorem (Funahashi) 

Let Φ be a monotonic increasing and bounded func-
tion, C є Rn a compact set, f : c Rl a continuous 
function. For any arbitrary ε > 0, there exist K є N 
and real numbers Wij, uj (j = 1,...,K ,i = 1,...,l) and 
wjk (j = 1,...,K ;k = 1,...,n)  such that if

then

This result also holds for any lp metric (p≥2), 
particularly the quadratic (p=2). More recent re-
sults [5], [9] have precised as a necessary and suf-
ficient condition on f that it be not a polynomial. 

The resulting neural network will take the form 
depicted in figure 1. Activation is sigmoidal for hid-
den units and linear for input and output units.

From now on, we will consider (without any loss 
of generality) the case of a single output. Then, the 
parameter set  becomes simply .

The idea of obtaining, with the cheapest possible 
structure, approximations of a certain utility, is in-
spired in this fact. The algorithm we will propose 
performs, 

specifically, a simple strategy -¿the simplest?- for 
the addition of hidden units.

O1 O2 LO

Wij

1V V2                                            VK
w jk

ξ1 ξ ξ2 N

Figure 1.  The basic structure of a three 
layer perceptron (one hidden layer) 

Source: Author’s own research.
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iii. the algorithm

A brief sketch of the SAGA algorithm would be as 
follows (with /* and */ enclosing comments). 

• Get a training (TRS) and a testing (TES) sets 
from f (with a single output variable)

• Initialize the net at random with a proper 
initial number K of hidden units

/*  

*/

• While t < tmax

/* or  or  */

  {

   T ← T(t);     /* tipically T(t) = A/log(1+t) */

   propose_change (W,W*);

   generate p ≈ U(0,1)

   If exp{-Δ/T} > p; /*  */

      W ← W*;  

   Else

      rejections++;

   If rejections > tol and K< Kmax

      add(W,K);

   t++;

   }

  propose_change (W,W*)   

  {

    Choose x є TRS at random;

    Choose r ≈ U(0,R);

/* R maximum step fixed heuristically */

    

/*ex (W) term of the error  

                                           function due to x */

   }

add (W,K)   

  {

    K++;          /* creates a new hidden unit */
   Choose m between 1 and K-1;      

  /* tipically m such that   
                                                  is maximized */
    

    

       
    rejections ← 0;
   }

Although the algorithm looks highly parameter-
ized, relevant parameters are three: one for the cool-
ing schedule of the SA, the maximum step R and the 
tolerance value (tol) which, if overcome by the num-
ber of consecutive rejections, calls the routine which 
adds a hidden unit to the net (it increases in N+2 the 
dimension of the weight space, but preserving the 
error obtained up to that moment). 

iV. an aPPliCation

We applied saga to the approximation of the in-
verse dynamics of a manipulator with two degrees 
of freedom. Given a control scheme as shown in fig. 
2, where y(t) is the output at time t, y*(t) the desired 
output and u(t) the control signal, we are interested 
in modelling the inverse application: what should 
have been the control signal in order to obtain the 
desired output. In our case, the inverse model re-
lates accelerations  y  in the joints with torques  
and  to be applied (voltages on the motors), given 
angular positions  and  and velocities  and .

Figure 2.  Control scheme with an inverse model
Source:  Author’s own research.

Although an analytic expression for such in-
verse is well known ((1) and (2)), it does not repre-
sent an exact model of the dynamics for any real 
manipulator, which should be modelled on the base 
of measurements on the plant. Anyhow, in order to 
evaluate our method, simulations were performed 
using such equations (where li and mi are, respec-
tively, the length and the mass of link i).
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V. exPerimentS

saga was applied to the function  
on the domain of R6 defined by ,

 and  with l1= 0.4 m.,  
l2= 0.2 m., m1=1 kg. and m2= 0.5 kg. The neural net 
has the form

for i = 1,2, being  and 

Here we show some results obtained for the case of 
. Figure 3 shows the evolution of the mean relative 

error for independent training sets. Good results can 
be observed for 300 (6.6 %) and for 400 examples (7.4 
%). Figure 4 shows, for the same sets, the evolution 
of the training error as new units were added to the 
hidden layer. Fixing a limit of 30 units, the approx-
imations reported above are obtained. However, it 
must be emphasized that not always a larger number 
of examples produces a larger approximation error. 
For example, if we had stopped the process at 20 000 
iterations (figure 3) or at a maximum of 12-14 hid-
den units (figure 4), clearly it would have resulted 
more successful for the set of 400 examples. Anyhow, 
it is worth noting the great economy and simplicity 
of the resulting net structure. Figure 5 presents, for 
the same set of 400 examples, and a testing set of 
1500 examples, the time evolution of both errors (al-
ways mean and relative). Here is clearly illustrated 
the overtraining phenomenon: from the 50 000 iter-
ations on, the testing error grows up, which suggests 
that the useful stage of the process is over.

       
Figure 3. Training error (mean relative) vs. time (x1000 iterations)

Source: Author’s own research.

       
Figure 4. Training error (mean relative) vs. nr. of hidden units 

Source: Author’s own research.

        
Figure 5. Training and testing errors vs. time (x 1000 iterations)

Source: Author’s own research.

(1)

(2)

Vi. ConCluSionS

A stochastic technique for the construction of two-lay-
er perceptron type ANN’s was presented. It provides 
good approximations of any continuous function by 
means of very simple architectures and a minimal or 
quasi-minimal number of processing units. 
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The proposal was tried in the case of the inverse dy-
namics of a robotic manipulator with two degrees of 
freedom (rotational joints), which implied the approxi-
mate modelization of a function with six input and two 
output variables. Although the obtained results can be 
considered very good, it would be interesting to extend 
the experiments to more degrees of freedom, as well as 
to testing and training sets with higher cardinality. As 
for the domain over which we worked, it may be consid-
ered close enough to a real case. 
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