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Abstract
Introduction— Drought is one of the most criti-
cal hydrometeorological phenomenon in terms of its 
impacts on society. Although Colombia is a tropical 
country, there are areas of the territory which have 
periods of drought, and this causes significant economic 
damage. 
Objective— Due to recent advances in terms of the 
spatial and temporal resolutions of remote sensing, 
and artificial intelligence techniques, it is possible to 
develop automatic learning models supported by his-
torical information. 
Methodology— In this study, a Random Forest (RF) 
and Bagged Decision Tree Classifier (DTC) model was 
built to perform spatial and temporal drought predic-
tion in the department of Magdalena using the follow-
ing features: Normalized Difference Vegetation Index 
(NDVI), land surface temperature (LST), precipitation, 
Normalized Difference Water Index (NDWI), Normal-
ized Multiband Drought Index (NMDI), evapotrans-
piration (ET), surface soil moisture (SSM), subsur-
face soil moisture (SUSM), Multivariate ENSO Index 
(MEI), Southern Oscillation Index (SOI), and Oceanic 
Niño Index (ONI). 
Results— For labelling, which allows one to train and 
evaluate the model, the Standardized Precipitation 
Index (SPI) was used to identify drought events. 
Conclusions— The implementation of the developed 
model can allow governmental entities to take actions 
to mitigate impacts generated by recurring droughts 
in their territories.
Keywords— Drought forecasting; Standardized 
Precipitation Index; satellite imagery; Google Earth 
Engine; machine learning; random forest; decision tree 
classifier; spatial interpolation

Resumen
Introducción— La sequía es uno de los fenómenos hidro-
meteorológicos más críticos por sus impactos en la socie-
dad. A pesar de que Colombia es un país tropical, existen 
zonas del territorio que presentan periodos de sequía, lo 
que ocasiona importantes perjuicios económicos. 
Objetivo— Debido a los recientes avances en cuanto a 
las resoluciones espaciales y temporales de la teledetec-
ción, y a las técnicas de inteligencia artificial, es posible 
desarrollar modelos de aprendizaje automático apoyados 
en información histórica. 
Metodología— En este estudio se construyó un modelo 
clasificador de Bosque Aleatorio (RF) y Árbol de Decisión 
en Bolsa (DTC) para realizar la predicción espacial y tem-
poral de sequía en el departamento del Magdalena utili-
zando las siguientes características: Índice de Vegetación 
de Diferencia Normalizada (NDVI), temperatura de la 
superficie terrestre (LST), precipitación, Índice de Agua 
de Diferencia Normalizada (NDWI), Índice de Sequía 
Multibanda Normalizada (NMDI), evapotranspiración 
(ET), humedad superficial del suelo (SSM), humedad sub-
superficial del suelo (SUSM), Índice ENSO Multivariado 
(MEI), Índice de Oscilación del Sur (SOI) e Índice del Niño 
Oceánico (ONI). 
Resultados— Para el etiquetado, que permite entrenar 
y evaluar el modelo, se utilizó el Índice de Precipitación 
Estandarizado (SPI) para identificar los eventos de sequía. 
Conclusiones— La implementación del modelo desar-
rollado puede permitir a las entidades gubernamentales 
tomar acciones para mitigar los impactos generados por 
sequías recurrentes en sus territorios.
Palabras clave— Predicción de sequías; Índice de Pre-
cipitación Estandarizado; imágenes de satélite; Google 
Earth Engine; aprendizaje automático; bosque aleatorio; 
clasificador de árbol de decisión; interpolación espacial
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I. Introduction

Drought is a common and frequently occurring characteristic of the climate [1], and it is defined 
as a lack of moisture caused by the absence of precipitation during a given period of time [2]. 
When the length of time without precipitation increases significantly, the amount of available 
water cannot meet the water demand of the environment and population [3]. According to the 
FAO, drought is one of the most critical natural phenomena in terms of impacts on society, since 
it halts food production, prevents the development of pastures, affects markets, and causes the 
deaths of living beings and population migration [4].

An increase in the number of droughts has been pointed out as one of the main consequences 
of climate change. There has not just been an increase in their frequency: an increase in the 
intensity of droughts is also expected [5], [6]. This is due to changes in the hydro-climatological 
variables that condition or determine the occurrence of drought events [7], which estimates a 
reduction in precipitation of between 2% and 8% for each degree kelvin that the temperature 
increases due to global warming. In addition, CU and NCAR predicts an increase in evapo-
transpiration and an increase in the surface temperature [8].

In Colombia, drought has had a significant impact on the population. During the 2014 
drought event, there were 642 fires in the departments of La Guajira, Magdalena, Córdoba, 
Atlántico, Sucre, Bolívar, and Cesar, as well as the deaths of 3 200 head of cattle, the loss of 
about 47% of rice crops, and water shortages in 48 municipalities in Colombia [9]. In the case 
of the department of Magdalena, the drought event that occurred in 2015 reduced the water 
supply of the department by 60%, decreasing the water supply available for the population and 
for agricultural, fish farming, and livestock farming activities in the department, which led to 
food shortages [10].

Considering the negative effects of drought and the possible increase in its frequency as a con-
sequence of climate change, it is necessary to implement mechanisms to monitor the phenom-
enon and search for strategies for implementing adaptation measures and reducing its effects. 
As part of these mechanisms, there are early warning systems supported by automatic learn-
ing techniques that make it possible to evaluate or predict the occurrence of droughts [11]-[16].

Machine learning (ML) is a group of computational techniques within artificial intelligence 
(AI), which takes inputs from statistics to learn from past events, recognize patterns and pre-
dict new observations [17]. Within ML techniques, there are several supervised and unsuper-
vised methods, such as Neural Networks, Decision Trees, Logistic Regression, Principal Com-
ponent Analysis, Clustering, among others. ML applications range from cancer prediction and 
forecasting [17], automatic speech recognition [18], daily flow forecasting [19], remote sensing 
[20], among others.

Regarding the application of artificial intelligence for drought prediction, some works 
stand out [11] stand out: for the prediction of agricultural drought in Australia, they imple-
ment classification and regression trees, random forests, flexible discriminant analysis, 
and support vector machines. In Korea, the authors run random forest models and regres-
sion trees in different climatic regions of the United States for drought prediction, which 
is determined by the Standardized Precipitation Index (SPI) [12]. In Malaysia, in order to 
evaluate and reduce the potential impact of drought on palm crops, the authors implement 
different types of support vector machines for the prediction of the Standardized Precipita-
tion Evapotranspiration Index (SPEI) [13]. Similarly, Australian researchers predict SPEI 
for assessing agricultural drought over South-Eastern Australia, making use of models 
such as random forest, support vector machines, and neural networks [14]. In Canada, the 
authors implement bootstrapping and boosting in artificial neural networks and support 
vector machines for SPI prediction at different time scales over the Awash River basin in 
Ethiopia [15]. Finally, China proposes a new index to evaluate drought, called the Integrated 
Agricultural Drought Index (IDI), and uses neural networks with back-propagation for the 
recognition of non-stationary patterns in the occurrence of droughts [16]. In Colombia, the 
National Observatory, for the follow-up and monitoring of drought in Colombia and through 
unsupervised methods such as principal component analysis, estimated the threat due to 
meteorological drought at the national scale [21].
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Several studies incorporate satellite information as an input variable for the execution 
of different models [14], [16], [12]. This is because remote sensors provide data with a high 
temporal resolution that covers large extensions of land [3], thus allowing access to areas 
where field data is scarce or where there is a low density of specific data. The Colombian 
territory is no exception to the problems mentioned above; for this reason, the implementa-
tion of strategies or models for the evaluation of droughts using open, free, and quality infor-
mation, such as the use of satellite images, becomes a necessary strategy for carrying out 
hydrometeorological studies distributed in any part of the territory. Additionally, droughts 
are natural phenomena that have an impact on large portions of land [1]; therefore, it is 
relevant to obtain continuous maps where the spatiality of the phenomenon is detailed. The 
use of remote sensing data facilitates obtaining these results and reduces the uncertainty 
involved in making distributed maps by implementing interpolation techniques where the 
density of point data is low.

This work seeks to implement another type of Machine Learning (ML) tool for drought 
prediction over the Colombian territory. In this case, the department of Magdalena is 
used as a pilot study area, and, by implementing satellite information, the intent is to 
predict the droughts determined by the SPI, using decision trees and random forests. 
This allows one to model the temporal occurrence and spatial distribution of drought 
events over the department. The objective is to establish an early warning system that 
allows authorities to take measures to reduce a region’s vulnerability to drought events 
and to establish a methodology for drought prediction that can be implemented in other 
territories of Colombia.

II. Study Area

Each year, UNGRD (Colombia) prepares a consolidated report on emergencies reported in 
each municipality of Colombia [22], in which the damage and human and economic losses 
are recorded. Droughts are among the events reported. Between 2010 and 2019, 144 drought 
events were recorded (Table 1), and the departments of Cauca and Magdalena are the depart-
ments with the highest numbers of events. Therefore, considering the high recurrence of 
events and territorial extension, the department of Magdalena was selected as a pilot study 
area.

Table 1.
Droughts reported by departments to the UNGRD from 2010 to 2019.

Department Droughts reported Department Droughts reported
Atlántico 8 Guajira 13
Bolívar 12 Magdalena 17
Boyacá 4 Nariño 5

Caldas 1 Norte de 
Santander 2

Cauca 17 Quindío 1
Cesar 7 Risaralda 9
Córdoba 14 Santander 13
Cundinamarca 2 Sucre 6
Guaviare 1 Tolima 4
Huila 1 Valle de cauca 5

* The consolidation of emergencies for the year 2010 presented problems for the visualization 
of the information; therefore, the reports for the year 2010 could not be considered.

Source: Authors.

The department of Magdalena is in northern Colombia, with a territorial extension of 
23 188 km2 [23], and a population of 1 263 788 inhabitants [24]. The average temperature 
varies by sector within the department; in the south it can exceed 28°C, and in the cen-
ter and north, it is between 26°C-28°C; meanwhile, in the Sierra Nevada, it decreases 
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according to the elevation with respect to sea level, reaching –8°C. With a bimodal regime, 
the average annual precipitation varies by sector within Magdalena: in the flat area of 
the department, the average annual precipitation is between 1 000 and 1 500 mm, and in 
the south and in the vicinity of the Sierra Nevada, the average precipitation exceeds 2 000 
mm [25].

III. Data

A. Remote sensing data

In Korea, the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature 
(LST), precipitation, Normalized Difference Water Index (NDWI), Normalized Multiband 
Drought Index (NMDI), and Evapotranspiration (ET) were used as predictor variables. Addi-
tionally, the Surface Soil Moisture (SSM) and Subsurface Soil Moisture (SUSM) were consid-
ered [12]. All these variables are directly related to the water content present in the soil and 
hydrological systems [26]. In addition, vegetation responds to moisture changes; therefore, the 
vegetation indices NDVI, NDWI, and NMDI were considered to understand the state of the 
vegetation and how it is affected by a moisture deficit. 

The previously mentioned variables are obtained through the Google Earth Engine (GEE) 
platform [27], from which satellite information is extracted for the department of Magda-
lena for the period from 2010 to 2019 on a monthly time scale. For precipitation, the Cli-
mate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) database was 
accessed, specifically UCSB-CHG/-CHIRPS/DAILY, with a spatial resolution of 0.05°, which 
is equivalent to 5.5 km (Fig. 1A). Soil moisture data were provided by the National Aero-
nautics and Space Administration (NASA) in conjunction with the U.S. Department of Agri-
culture (USDA) at a resolution of 0.25°, which corresponds to 28 km (Fig. 1G and Fig. 1H). 

 

Fig. 1. Satellite predictor variables: A) Precipitation. B) Land Surface Temperature (LST). 
C) Evapotranspiration (ET). D) Normalized Difference Vegetation Index (NDVI). E) Normalized Difference 
Water Index (NDWI). F) Normalized Multiband Drought Index (NMDI). G) Surface Soil Moisture (SSM). 

H) Subsurface Soil Moisture (SUSM).
Source: Authors.



253

Hererra posada & Aristizábal / INGE CUC, vol. 18, no. 2, pp. 249-265. July - December, 2022

The NDVI, NDWI, and NMDI (Fig. 1D, Fig. 1E and Fig. 1F) were estimated using reflec-
tance and the equations in Table 2 at a spatial resolution of 0.5 km. The NDVI indicates the 
state of the vegetation, based on the radiation reflected by the vegetation in near-infrared 
wavelengths with respect to the red band of the visible spectrum [28]; the NDWI estimates 
the moisture content of the vegetation based on the radiation reflected by the surface in the 
infrared wavelength [29], and the NMDI is used to track the moisture content of the soil and 
vegetation from the infrared [30].

Table 2.
Calculation and bands needed to find NDVI, NDWI and NMDI.

Índices de vegetación Fórmula

NDVI ρBanda 2 – ρBanda 1/ρBanda 2 + ρBanda 1

NDWI ρBanda 2 – ρBanda 5/ρBanda 2 + ρBanda 5

NMDI ρBanda 6 – ρBanda 7/ρBanda 2 + ρBanda 6 – ρBanda 7

Source: Authors.

As can be seen, each variable has a different spatial resolution, so it is necessary to homog-
enize the resolutions; for this purpose, the GEE Scale function was used and all the satellite 
information was resampled at a spatial resolution of 1 km.

As for the missing values within the data series, these were filled in with the average value 
of each image. Anomalous data, caused by information processing errors or errors in data col-
lection, were replaced by the 99th percentile, as the maximum value, and the 1st percentile, 
as the minimum value, within the data series of each predictor variable.

B. Macro-climatic variables

The phenomena of El Niño Southern Oscillation (ENSO) La Niña and El Niño are closely 
related to the hydrological anomalies that have developed in the South American tropics [31]. 
High precipitation and maximum flows are associated with the occurrence of La Niña, while 
El Niño is characterized by long-lasting dry periods, modifying the intensity and prolongation 
of droughts within the territory [31].

To evaluate the influence of ENSO, variables such as the Multivariate ENSO Index (MEI), 
Southern Oscillation Index (SOI), and Oceanic Niño Index (ONI), which are elaborated using 
a monthly temporal resolution by the U.S. Oceanic and Atmospheric Administration (NOAA) 
and consider different parameters that allow the status of each month to be classified as El 
Niño, La Niña, or Neutral, were selected for the study.

IV. Model for Drought Forecasting

A. Reference data: SPI

To evaluate drought conditions within the department of Magdalena, the Standardized 
Precipitation Index (SPI) is selected as the model response variable. The SPI evaluates pre-
cipitation anomalies at various time scales, allowing the study of various types of droughts 
[3].

For the calculation of the SPI, precipitation information on a monthly scale and a continu-
ous information record of at least 30 years are required [2]. Therefore, a search was made for 
data provided by the IDEAM from the existing precipitation stations within the department of 
Magdalena that meet the requirements for the calculation of the index. Thus, 43 precipitation 
stations that present rainfall information on a monthly scale since before 1989 were identi-
fied, as shown in Fig. 2.

The other variables were obtained through information provided by the MODIS satellite at spa-
tial resolutions of 1 km for LST (MODIS/006/MOD11A2) (Fig. 1B), 0.5 km for ET (MODIS/006/
MOD16A2) (Fig. 1C), and 0.5 km for reflectance (MODIS/006/MOD09A1).
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Fig. 2. Yield data precipitation stations within the department of Magdalena used in the study, 
and their respective areas of influence.

Source: Authors.

The rainfall stations represent point values, so they do not allow one to establish the spatial 
distribution of rainfall in the department, which is necessary to establish the spatial distribu-
tion of SPI, preventing the analysis of this variable with the previously mentioned distributed 
variables. For each IDEAM rainfall station within the department of Magdalena, an area of 
influence with a radius of 5 km was established (Fig. 2), which makes it possible to establish 
an SPI value for each area of influence, as well as to determine the satellite information cor-
responding to each evaluated area. This allows the development of the analysis (Fig. 3).

Fig. 3. Conceptual scheme of the sources of information for the predictor variables and the response variable.
Source: Authors.
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The SPI is calculated by fitting the monthly precipitation data (x) to a gamma distribution 
function (1), where the alpha (α) and beta (β) parameters of the function are estimated for each 
precipitation station and time scale. With the precipitation series fitted to a distribution, we 
proceed to calculate the cumulative probability of each event (2). Since the gamma distribution 
function is not defined for events in which x = 0, the factor (3) is added, which represents the 
probability in the case that precipitation events have values of 0 [32]. The cumulative prob-
ability is transformed into a standard normal random variable (Z), with a mean of zero and a 
standard deviation of 1; the Z values found represent the values corresponding to the SPI [32]. 
In other words, the SPI represents how many standard deviations, above or below, an event 
is from the average rainfall fitted to the gamma distribution function [32].

(1)( ) = 1
∗Г( )

∗ −1 ∗
−

    

(2)( ) = ∫ ( )0                  

(3)( ) = + (1 − ) ∗ ( )  

By considering the normal distribution of SPI values, drought or wetness events can be 
defined [2]. The WMO [3], based on [2], categorizes the SPI from extremely wet, for SPI values 
greater than 2, to extremely dry, for values less than –2 (Table 3).

Table 3.
SPI values. 

Value Category

2.0 y más Extremely wet

1.5 a 1.99 Very wet

1.0 a 1.49 Moderately wet

–0.99 a 0.99 Near normal

–1.0 a –1.49 Moderately dry

–1.5 a –1.99 Severely dry

–2.0 y menos Extremely dry

Source: [3].

The SPI can be evaluated for different time scales depending on the type of drought to 
be studied, which can be meteorological, hydrological, or agricultural [33]. Meteorological 
drought occurs when, during a period of time, precipitation is lower than expected; hydro-
logical drought refers to a decrease in river flow and the levels of reservoirs and lakes due 
to a deficit of precipitation; and agricultural drought refers to the fact that, due to the deficit 
of precipitation, there is not enough moisture in the soil for the normal functioning of crops 
[33]. According to WMO, to study agricultural drought, the SPI should be calculated with 
accumulated precipitation between 1 and 6 months; for meteorological drought, the accumu-
lated precipitation should be between 1 and 2 months, and for hydrological drought, between 
6 and 24 months [3].

In this sense, the present work evaluates agricultural drought, due to the social repercus-
sions of this event. For this, the SPI was calculated with a precipitation accumulation period of 
3 months (SPI3), since this allows one to understand the changes of agricultural drought [34] 
and provides a seasonal approximation of precipitation [3]. Additionally, the time span evalu-
ated is relevant for annual crops [35] and the intra-seasonal study of precipitation is relevant 
for herbaceous and low-cut crops [36].
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In this way, and with the IDEAM precipitation information, SPI3 was calculated for each 
precipitation station through the SPI Generator program developed by the National Drought 
Monitoring Center of the UNL [37], and the SPI3 values from 2010 to 2019 in the areas of 
influence of each station were selected.

The SPI3 value calculated is a continuous value that can be classified according to Table 3; 
however, the classification of the drought magnitude is a function of local conditions [3]. There-
fore, in order to establish which SPI3 values represent drought in the department of Magdalena, 
SPI3 was calculated for each month and municipality that reported drought emergencies to 
the UNGRD. The frequency histogram of the SPI3 values obtained is shown in Fig. 4. As can 
be seen, most of the reported months have an SPI3 of –1; therefore, the continuous variable 
is transformed into a categorical variable. SPI values below –1 indicate a drought and values 
above –1 indicate normal or wet conditions, as shown in Fig. 5.

Fig. 4. SPI3 frequency histogram of months with reported droughts 
in the department of Magdalena from 2010 to 2019.

Source: Authors.

Fig. 5. Map of SPI3 classified into drought and normal/wet conditions.
Source: Authors.
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B. Predictor variables 

Initially, 11 predictor variables were considered: the ONI, MEI, SOI, LST, precipitation, 
ET, SSM, SUSM, NDVI, NDWI, and NMDI. For the selection of the variables with the high-
est predictive capacity, the free Feature Selector from scikit-learn in Python was used, where 
the importance of each variable is calculated according to a gradient boosting machine (GBM) 
[38]. The results are presented in Fig. 6. The variables that contribute the least to the drought 
prediction are the NDWI, ONI, and MEI, so they were eliminated from the model. To estab-
lish the collinearity between the remaining variables, the Pearson correlation coefficient was 
calculated, as shown in Fig. 7. The SUSM and SSM variables show a high positive correlation 
(0.94), so the SUSM variable was not considered in the model due to its high collinearity and 
lower importance compared to SSM (Fig. 6).

Fig. 6. Importance of each variable according to the Feature Selector.
Source: Authors.

Fig. 7. Correlation of selected variables.
Source: Authors.

C. Assembled models

For the construction of the drought prediction model, ensemble machine learning models 
were used. These models retain the properties of the base estimator but reduce the variance 
or fit problems that can affect model performance. Bagging-type ensemble models use estima-
tors with good performance and build multiple models simultaneously, randomly selecting the 
observations and variables, in some cases. This is why they are used for problems where vari-
ance reduction is desired [39]. Boosting methods, on the other hand, use weak estimators, i.e., 
with poor performance, and build a new consecutive model, in which they assign weights to 
the observations erroneously predicted by the base estimator. In this way, in the end, a robust 
model is obtained that reduces the fitting problems of the initial models [39], [40].
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In this work, we chose to select bagging models with decision tree-type estimators because 
of the good performance of these estimators when there is a large volume of observations (they 
yield excellent fits). The following is a brief description of the two bagging models used.

1) Bagging decision trees 

The Decision Tree Classifier (DTC) is based on fragmenting a complex decision into multiple 
simple decisions, with the objective that the final result gives a reason for the solution of the 
initial complex decision [41]. It is called a decision tree because simpler decisions are derived 
from the complex decision, and these in turn become even simpler decisions, thus forming a 
tree-shaped scheme in which the leaves represent the final answer to each question and the 
roots represent the complex decision to be addressed [41].

To reduce the variance associated with the decision tree model, subsets of data will be 
created by randomly extracting observations from the training data, thus creating different 
predictive models with each data set; the final result is the most repeated prediction within 
each subset [39]. 

2) Random forest

The Random Forest (RF) method uses the same concept of bagging decision trees, but the 
difference is that in RF, in addition to randomly selecting the observations of each subset, it 
also performs a random selection of variables to be used in each subset of data [42].

To run the supervised models, the sklearn package was implemented through Python [43]. 
According to the scheme shown in Fig. 8, initially the observations are randomly divided into 
training data (75%), which are used for validation curves, hyper-parameter fitting, learning 
curves, and re-training the model, and evaluation data (25%).

Fig. 8. Framework of the application of RF and DTC models.
Source: Authors.

V. Drought Forecasting Model

A validation curve refers to the result obtained by varying a hyper-parameter over a wide 
range of values, in order to delimit where the model performs best by modifying only one 
hyper-parameter [44]. On the other hand, with a learning curve, it is possible to visualize 
the behaviour or performance of the model as the number of observations increases, which 
makes it possible to establish whether the model has problems with fit or variance [44]. 
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Within the two procedures described and in the search for the best set of hyper-parameters, 
cross-validation is used, as shown in Fig. 8. This consists of dividing the training data into 
subsets, in this case, 5, and in each iteration 4 subsets are used for training and the remain-
ing subset is used for validation; thus, all the observations are used to both train and validate 
the model. The metric used to determine the performance in all the procedures described 
was recall, since it focuses on evaluating the accuracy or predictive ability of the class of 
interest, which in this case is the drought class. Finally, the final model, already calibrated, 
uses the evaluation data, i.e., 25% of the data, to predict the response variable; then, it is 
possible to discover the predictive capacity of the model by comparing the simulated SPI3 
with the measured values.

A. Bagging decision tree

Table 4 presents the hyper-parameters that optimize the model results in terms of recall. 
Fig. 9 shows the learning curve of the model: it is possible to observe that, as more observa-
tions are added, both the validation curve and the training curve increase the recall value; 
likewise, both curves tend to approach each other, which indicates a reduction in the variance 
of the problem.

Table 4.
Variation of hyper-parameters for bagging decision trees.

 Hyper-parameters
Changing  Range of values Best value

min samples leaf 20, 30, 40, y 50 40
Splitter Best o Random Best
max features Sqrt, Log2, o None Sqrt
Constant Value
Class weight Balanced
Criterion Entropy
Random state 0

Source: Authors.

Fig. 9. Learning curve for bagging decision trees.
Source: Authors.

Table 5 presents the classification report and confusion matrix using the evaluation data 
(25%): it can be observed that False Negatives (FNs) —drought events not identified by the 
model— represent 2.5% of the total evaluation data. False Positives (FPs) —drought events 
erroneously identified by the model— represent 21% of the total evaluation data. In fact, the 
number of FPs is higher than the number of True Positives (TPs) —drought events identified 
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by the model—. This percentage is significant and indicates that the model tends to overes-
timate the number of drought events. The accuracy for predicting drought is 0.33, while the 
recall is 0.8, which is in accordance with the percentages of FPs and FNs, respectively.

Table 5.
Classification report and confusion matrix results for bagging decision trees.

Precision Recall F1 Score Support
Near normal / wet 0.96 0.76 0.85 72374
Dry 0.33 0.8 0.47 10636
Average 0.88 0.76 0.8 83010
Evaluation data: 83010 TN: 54919 FN: 2089 TP: 8547 FP: 7455

Source: Authors.

B. Random forest

The set of hyper-parameters for random forest that yielded the best drought prediction are 
presented in Table 6.

Table 6.
Variation of hyper-parameters for random forest.

Hyper-parameters
Changing  Range of values Best value

min_samples_leaf 20, 30, 40, y 50 20
n estimators 90, 100, y 150 100
Class weight Balanced o Balanced subsample Balanced
Max features Sqrt, Log2, o None Sqrt
Constant Value
Min samples leaf 20
Criterion Entropy
Random State 0

Source: Authors.

Fig. 10 presents the learning curve obtained with RF, showing that the model improves 
performance, in terms of recall, as the amount of data increases, in both the training and 
validation curves. 

Fig. 10. Learning curve for random forest.
Source: Authors.
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Likewise, it is possible to observe that both curves tend to converge, which indicates that 
the variance of the problem is reduced as the model improves the learning process by increas-
ing the amount of data.

The results of the model with the evaluation data (25%) are shown in Table 7. The percent-
ages of FNs and FPs are 2% and 7.5%, respectively, indicating that the model with RF tends 
to reduce FNs over FPs. This is reflected in the precision and recall obtained (0.59 and 0.84, 
respectively).

Table 7.
Reporte de la Clasificación y Resultados de la Matriz de Confusión para Bosque Aleatorio.

Precision Recall F1 Score Support
Near normal / wet 0.97 0.91 0.94 72374
Dry 0.59 0.84 0.69 10636
Average 0.93 0.9 0.91 83010
Evaluation data: 83010 TN: 66100 FN: 1706 TP: 8930 FP: 6274

Source: Authors.

C. Spatial prediction of drought

 To discover the spatial distribution of droughts in the entire department of Magdalena, we 
proceeded to take the distributed values for each of the selected predictor variables, and, using 
the RF model constructed, we estimated the SPI3 value for the entire department.

The month of July 2014 was selected for the spatial validation of the SPI3 results. The press 
reports of the month in question stated that the municipalities of Santa Marta, Plato, Zapayán, 
Concordia, and Tenerife declared a public calamity due to drought; and the municipalities of 
San Sebastián, San Zenón, San Ángel, Nueva Granada, and Pivijay were close to declaring it. 
Reports indicated that 70% of the department’s crops were affected, 4 300 head of cattle died, 
and there were large forest fires [45]. In response to the emergency, 65 000 liters of water were 
provided to 100 000 families in the municipalities of Santa Marta, Zapallán, and Concordia 
[46]. Due to the state of emergency, on 1 August 2014, the UNGRD declared a public calamity 
for the entire department of Magdalena.

 

A B 

Fig. 11. Application of the random forest model for July 2014 and for municipalities 
experiencing a public calamity due to drought for the month in question. 

A) Drought forecast, according to SPI3. B) Drought probability map.
Source: Authors.
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The results of the prediction model, using RF, are shown in Fig. 11; Fig. 11A shows the 
prediction of the response variable and Fig. 11B presents the probability of the occurrence of 
drought.

To evaluate the spatial predictive capacity of the model, the modelled SPI3 pixels within 
the area of influence of each station were taken and compared with the SPI3 calculated from 
IDEAM rainfall stations. Table 8 presents the results, in which the percentages of FNs (0.7%) 
and FPs (29.6%) with respect to the total amount of data evaluated indicate an overestimation 
of the pixels with drought. Additionally, the accuracy and recall for predicting drought are 0.59 
and 0.98.

Table 8.
Report of the classification and confusion matrix results for random forest in July 2014.

Precision Recall F1 Score Support
Near normal / wet 0.97 0.48 0.64 1559
Dry 0.59 0.98 0.74 1208
Average 0.78 0.73 0.69& 2767
Evaluation data: 2767 TN: 741 FN: 19 TP:1189 FP: 818

Source: Authors.

According to Fig. 11A, 60.4% of the territory of the department of Magdalena experienced 
drought conditions. Fig. 11 highlights the municipalities that reported drought conditions 
for that month. It can be seen that, according to the model, drought is not present in all the 
municipalities reported, i.e., there are sectors with wet-to-normal conditions, which indicates 
that there may be areas that are more affected than others by the occurrence of the climatic 
phenomenon. Additionally, there are sectors that, according to the model used, present a high 
probability of drought, and these were not reported within the municipalities that declared a 
public calamity in the month in question.

A more detailed description of the events would help to strengthen the validation of the 
results. This would facilitate both the evaluation of SPI3 as an index to measure agricultural 
drought and a more detailed validation of any method developed to evaluate drought within 
the department.

VI. Conclusions and Discussion

The results obtained in this work indicate that ML methods are a tool with an important poten-
tial for predicting the temporal and spatial occurrence of droughts in the Colombian territory.

There is a wide range of ML methods. The present study indicates that the assembled meth-
ods perform adequately, with appropriate values for both model performance and spatial and 
temporal predictive capability.

Both RF and DTC models predict drought within the department in a timely manner; how-
ever, the accuracy of DTC is much lower than that obtained by RF, indicating that DTC greatly 
overestimates the occurrence of drought events compared to RF.

The model developed, in addition to providing a spatialized map of the occurrence of drought 
within the department, provides a map of the probabilities of the occurrence of the event, which 
could help local authorities to make decisions about how the emergency is distributed in the 
territory and to discover the sites with the highest probability of occurrence. This would allow 
them to determine the sectors most affected by the event and thus to deliver resources to these 
priority locations in a drought emergency within the department.

The information necessary to develop the proposed methodology is free and accessible to 
the public. This fact is relevant because it opens up the possibility of replicating the described 
workflow in other departments of Colombia and making a continuous and progressive follow-
up of the behaviour of the phenomenon, facilitating studies based on what has been observed 
and the implementation of mitigation strategies. The above can be implemented within the 
national strategy for the integral management of drought in Colombia, as a mechanism within 
the objective of strengthening the monitoring and follow-up of drought.
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As mentioned previously, the use of satellite images brings with it a great advantage in 
terms of the spatial distribution of information, but it is important to highlight the limitations 
that this type of data entails. For example, the low spatial resolution of some implemented 
variables such as the SSM, SUSM, and precipitation, which have resolutions of 28 km, 28 km, 
and 5.5 km, respectively, prevents the application of the proposed methodology in areas with 
little geographical extension, because there would not be enough information that was repre-
sentative of the conditions of the territory. In this same sense, to the extent that satellites or 
variables that provide a better spatial resolution are integrated, a more detailed study and 
applicability in areas with low territorial extension may be possible. 

On the other hand, the possibility of extending the applicability of the SPI is planned, i.e., 
taking advantage of the fact that the index has a normal distribution, it is possible to simul-
taneously evaluate both dry and wet conditions within the territory. This in turn makes it 
possible to study the impacts produced not only by drought, but also by an excess of humidity 
or precipitation within the territory.

The type of drought evaluated within the study is agricultural drought, so the precipitation 
deficit is studied in an accumulated period of 3 months. This is an initial approach according 
to the literature, but it is possible to adjust the accumulated months to evaluate the behav-
iour of certain vegetation or relevant crops within the economy of each department; within 
the Colombian territory, bananas and potatoes, among others, are especially relevant. Thus, 
it is feasible to implement within the models specific information related to the behaviour and 
needs of the crops, such as water requirements and in which seasons the harvest, cultivation, 
and growth occur. This allows a comprehensive assessment of drought from the perspective 
of the food security of the population and economic impacts. 

The variable to be implemented to evaluate drought within the study is the SPI, due to the 
ease with which this variable is obtained. It would be important in later studies to implement 
or evaluate different indexes that allow the evaluation of drought, such as the Standardized 
Precipitation and Evapotranspiration Index (SPEI), Effective Drought Index (EI), and Palmer 
Drought Index (PDSI), among others, which integrate, in addition to rainfall, other types of 
meteorological variables that would allow researchers to cover different aspects that are key 
in the occurrence or determination of drought. 
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