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Abstract
Introduction— The ever-growing number of users 
connected to internet via mobile devices has driven to 
increase the research in the paradigm of hybrid opti-
cal networks called Radio-over-Fiber. These networks 
take advantages of the bandwidth given by the optical 
fiber and the mobility given by wireless transmissions, 
avoiding the bottleneck of optical-to-electrical conver-
sion interfaces. However, the chromatic dispersion of 
the optical fiber generates distortions in the radiofre-
quency signals optically modulated, limiting the reach 
of transmission.
Objective— To improve the performance of a Radio-
over-Fiber system in terms of bit-error-rate, using non-
symmetrical demodulation by means of the machine 
learning algorithm Support Vector Machine.
Methodology— A Radio-over-Fiber System is simu-
lated in the specialized software VPIDesignSuite. The 
radiofrequency signals are modulated at 16 and 64-QAM 
formats with different laser linewidths and transmitted 
over optical fiber. The Support Vector Machine algorithm 
is applied to carry out nonsymmetrical demodulation.
Results— The implementation of the machine learning 
algorithm for signal demodulation significantly improves 
the network performance, reaching transmissions up to 
30 km. It implies a reduction of the bit-error-rate up to 
two orders of magnitude in comparison with conven-
tional demodulation.
Conclusions— Mitigation of distortions in terms of 
bit-error-rate is demonstrated in a Radio-over-Fiber sys-
tem using nonsymmetrical demodulation by using the 
Support Vector Machine algorithm. Thus, the proposed 
technique can be suitable for future high-capacity access 
networks. 
Keywords— Asymmetrical demodulation; Machine 
learning; millimeter wave band; Radio-over-fiber; Sup-
port Vector Machine

Resumen 
Introducción— El constante crecimiento de usuarios 
conectados a internet por medio de dispositivos móviles 
ha conllevado a incrementar la investigación en el para-
digma de las redes híbridas conocido como Radio-sobre-
Fibra. Estas redes aprovechan las ventajas del ancho 
de banda de la fibra óptica y la movilidad de las trans-
misiones inalámbricas, evitando el cuello de botella que 
se da por la conversión óptico a eléctrico. No obstante, 
la dispersión cromática propia de la fibra óptica genera 
distorsiones en la señal de radiofrecuencia modulada 
ópticamente, lo cual limita su alcance.
Objetivo— Mejorar el desempeño de un sistema de radio 
sobre fibra en términos de la tasa de error de bit, usando 
demodulación no simétrica por medio del algoritmo de 
aprendizaje automático Máquina de Soporte Vectorial.
Metodología— Se simula un sistema de Radio-sobre-
Fibra en el software especializado VPIDesignSuite. Se 
transmiten señales de radiofrecuencia moduladas en 
formatos 16 y 64-QAM con diferentes anchos de línea de 
láser sobre fibra óptica. Se aplica el algoritmo Máquina 
de Soporte Vectorial para la demodulación de la señal.
Resultados— La implementación del algoritmo de 
aprendizaje automático para la demodulación de la señal 
mejora significativamente el desempeño de la red per-
mitiendo alcanzar los 30 km de transmisión por fibra 
óptica. Esto implica una reducción de la tasa de error de 
bit hasta en dos órdenes de magnitud en comparación 
con la demodulación tradicional.
Conclusiones— Se demuestra que con el uso de umbra-
les asimétricos usando algoritmo de Máquina de Soporte 
Vectorial se logran mitigar distorsiones en términos de 
la tasa de error de bit. Así, esta técnica se hace atractiva 
para futuras redes de acceso de alta capacidad.
Palabras clave— Aprendizaje automático; banda de 
ondas milimétricas; demodulación asimétrica; Máquina 
de Soporte Vectorial; Radio-sobre-fibra
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I. Introduction

Currently, wireless communication systems have covered a large part of the globe, thanks to 
the high diffusion of mobile devices, since these systems do not depend on a fixed connection to 
access the internet [1]. However, most of the bands of the electromagnetic spectrum for wireless 
telecommunications services are occupied and regardless of their efficiency, more bandwidth is 
necessary for new high-performance applications [2]. For this reason, investigations have been 
carried out in a region of the spectrum known as the Millimeter Wave band (MMW), which 
includes a range from 30 GHz to 300 GHz [3]. Mainly the W band (75 GHz - 110 Hz), although 
the 60 GHz band, as it is not licensed, has been subject of experimentation for more than a 
decade [4]. The objective of operating in the MMW band is basically since next-generation wire-
less communication networks must provide very high data speeds, with low latency, a signifi-
cant increase in Quality of Service (QoS), compared to current 4G LTE networks. To meet the 
gap between user demand and channel capacity, MMW communication equipment has become 
a strong attraction for upcoming high-demand networks [5].

For these future networks, it has been proposed to transmit Radio Frequency signals (RF) by 
optical fiber given its low attenuation, therefore communication between antennas could be only 
used for the connection with the end user. This proposal is known as Radio-over-Fiber (RoF) 
(Fig. 1) [6]. In recent years, RoF technology has been considered to support fifth generation (5G) 
mobile networks, promising high-speed transmissions at more than 10 Gbps [7]. In addition, 
RoF technology is promising for its ability to provide connectivity in difficult-to-access areas 
(mountainous, remote, rural, among others).

 
  

CS

Residential Area

28 GHz

RAU

City

2.5 GHz

RAU

Mobile

60 GHz

RAU

CS: central station 
RAU: remote antenna unit

Fig. 1. RoF System. 
Source: Authors.

One of the advantages of RoF technology is that it concentrates the most expensive RF 
equipment in a central station and the rest of the equipment is installed in the nodes or in the 
end users as can be seen in Fig. 2. In this sense, it is possible to reduce costs in power and 
complexity [8].
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Fig. 2. Architecture proposed by RoF technologies: Central office and 
Remote Antenna Unit (RAU) as a base station.

Source: Authors.
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A wireless access network RoF architecture has also been proposed, implementing 
the Wavelength Division Multiplexing (WDM) technique for an optimal deployment 
of base stations in rural areas [9]. Therefore, making use of this type of technology in 
countries with a high density of remote areas and difficult access could solve their cov-
erage problems. For example, in Colombia about 47% of households do not have internet 
service [10].

However, in RoF systems there are also problems that affect the quality of the signal, 
such as the non-linear effects of the optical fiber, dispersions and power fluctuations. For 
this reason, methods are required to mitigate these effects. In the first place, phase mod-
ulation along with coherent optical detection was proposed as an alternative to RoF sys-
tems with intensity modulation and direct detection (IM/DD systems). However, coherent 
detection-based systems are very expensive to be implemented in access networks. Hence, 
due to IM/DD systems are less tolerant to noise and system imperfections [11], future 
RoF systems require the use of techniques to mitigate several effects without exceeding 
costs or computational complexity.

Effects that alter the signal’s phase known as phase noise, are seen in a constellation 
diagram as asymmetric distortions, unlike white noise. Therefore, asymmetric demodula-
tion methods have emerged in optical communication systems, so that they can reduce the 
Bit Error Rate (BER), adjusting to the geometric behavior of the distortions. In researches 
from Denmark [12] the authors proposed for the first time the demodulation of signals using 
Machine Learning (ML) with the k-means clustering algorithm on an 8PSK modulated 
RoF signal, being effective in a 40 km fiber optic link. Furthermore, algorithms such as: 
neural networks [13], k-Nearest Neighbors (KNN) [14] and k-means [12], have been pro-
posed in the recent state of the art to minimize errors in purely optical systems. On the 
other hand, in colombian studies [15] a minimization of BER is exposed using ML tech-
niques as a function of the Optical Signal to Noise Ratio (OSNR), where it is possible to 
see gains in both BER and OSNR, for example, at lower values ​​of OSNR the same BER 
values ​​can be achieved by using ML algorithms. Among the studies carried out in RoF 
communications in the MMW band, they have achieved gains of up to 1.8 dB for multilevel 
modulations at distances of up to 15 km of optical fiber [16].

Thus, in this work, we propose the adaptation of the well-known machine learning 
algorithm called Support Vector Machine (SVM) as an asymmetric digital demodulator 
to reduce the BER in RoF systems operating in spectral bands above 60 GHz. The system 
is simulated in the specialized software VPDesignSuite®.

The manuscript sections are organized as follows: in Section II the operation and trends 
of RoF systems are exposed, in Section III the proposal for asymmetric demodulation 
using SVM is presented. In Section IV the results and discussions are shown, finally, the 
conclusions are presented in Section V.

II. Architecture and Trends in Radio Over Fiber (RoF) systems

Classic RoF systems are characterized by transmitting information by two transmission 
media: free space and fiber optics. The signals transmitted through free space are RF 
signals, which are modulated in the optical regime and transmitted through the optical 
fiber. The purpose of transmitting RF signals through the optical fiber is to compensate 
the high losses of the wireless medium, since optical fiber is an excellent transmission 
medium, thanks immunity to electromagnetic interference and its attenuation is consider-
ably low around 0.2 dB/km-0.5 dB/km [17]. With the aim of achieving more efficient RoF 
systems, it is intended that the distances to be transmitted by optical fiber are as exten-
sive as possible without incurring in amplification stages as well as without increasing 
the launch power to avoid the stimulation of non-linearities derived from the Kerr effect 
of optical fiber itself [18]. However, chromatic dispersion describes a cyclical behavior 
resulting in power losses [19], [20] (Fig. 3).
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Fig. 3. Cyclical effects by chromatic dispersion.
Source: Taken from [20].

In RoF systems, modulation occurs in two stages, one electrical and one optical. In the 
first one, the RF electrical signal is modulated in traditional modulation formats: in ampli-
tude, frequency or phase. In the second stage, once the RF signal has been modulated, it is 
delivered to the optical modulator, where it is responsible for modulating the optical inten-
sity, in an On-Off format. At the receiver side, a photodetector is used to perform the optical 
to electrical conversion before being radiated. It is common to use optical amplifiers before 
the modulation and emission stage in the receiver (Base Station) [8]. Finally, the RF signal 
is emitted, and the wireless receiver captures the signal to proceed with the information 
recovery (Fig. 4).
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Fig. 4. Radio Over Fiber schematic. 
Source: Authors.

Although the RoF systems are also an alternative to minimize some costs, there are still 
the expenses associated with the operating equipment and the licenses required for its opera-
tion, which could be expensive; this results in a barrier for an organization to be willing to 
offer broadcasting services [21]. An alternative to reduce further costs is the implementation 
of Software Defined Radio (SDR). 

SDR equipment are devices in which most of the functions of a communications system are 
implemented through the use of programmable boards such as USRP (Universal Software 
Radio Peripheral). Its implementation in communications systems would considerably reduce 
the costs associated with the hardware [22]. Studies have shown the use of SDR to gener-
ate multiplexed signals, being SDR a good candidate in terms of BER for 5G networks [23]. 
Numerous designs of communication systems based on SDR implementing paid software or 
open source have been implemented [24]-[27], presenting results that make SDR attractive in 
conjunction with the next generation, in which networks are intended to be robust in terms of 
bandwidth and latency [28].
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The requirements for next-generation networks, in terms of bandwidth and delays, are 
not the only characteristics that must be taken into account, the issues in network deploy-
ment should also be considered. Rural and remote areas are another factor that impede the 
connectivity of certain places [29], RoF systems based on SDR are an alternative of minimal 
complexity and cost-effective design to give access to areas where the optical fiber deploy-
ment is impractical or poor. In Colombia [23], Malaysia [27] and Denmark [30] the authors 
agree that the future of 5G networks comes from the combination of RoF systems with SDR 
due to its easy implementation and acceptable performance, achieving latency close to 1 ms 
and BER lower than .

II. Asymmetric demodulation in RoF systems using Support Vector Machine

Contrary to traditional demodulation that establishes fixed decision thresholds, asymmetric 
demodulation applies nonsymmetric adaptive thresholds by using ML algorithms [31]. This is 
most easily applied and understood by analyzing constellation diagrams. Fig. 5 shows three 
diagrams of a QPSK constellation, resulting from three types of noise, respectively: Additive 
Gaussian White Noise (AWGN), changes in phase, and non-linear phase noise (predominant 
in optical fiber transmissions [15]). Note that in the three cases, fixed decision thresholds for 
demodulation are established, which for the first two cases are functional, however, as the 
linear and non-linear phase noise increase, the symbols tend to become more distorted. Fur-
thermore, they rotate angularly, moving away from the quadrants established by the fixed 
thresholds and causing a considerable increase in BER.

a) b) c)

Fig. 5. Constellation diagrams affected by noise a) AWGN b) Phase Noise and c) Non-linear Noise.
Source: Taken from [15].

SVM is a ML algorithm widely used in different fields for data classification and regression. 
SVM classifies the data using a hyperplane that separates the training data. These training 
data, in the demodulation case, are the received symbols that suffered distortions by transmis-
sion effects and arrived in undesired positions. Likewise, hyperplanes are built making use 
of support vectors which are certain training data that are usually found in the limits of one 
class and another (Fig. 6) [32]. In our proposal, the algorithm operates using 2,250 symbols 
(5%) of a received frame for training and the rest for demodulation.

A Class
B Class

Hyp
er

pl
an

e

Support 
Vectors

Fig. 6. Data classification using SVM.
Source: Authors.
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In certain cases, when the data is not separable, it is mapped by means of mathematical 
functions known as kernels, which seeks to find a non-linear separation between classes. The 
kernel functions move the data to a dimensional space larger than the original (Fig. 7), look-
ing for a separation of the data in this larger space [33].

 
X

y
Z

Fig. 7. Kernel function in SVM classification.
Source: Authors.

For demodulation, the classes to be separated would be 16 or 64 (according to the modula-
tion format) and the thresholds of each class are calculated by doing “one vs the rest” (Fig. 8) 
for each modulation format.
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Fig. 8. Constellation diagram 16-QAM a) before and b) after SVM classification.
Source: Authors.

Hence, the SVM establishes asymmetric borders for symbol classification. In this sense, 
the SVM-based demodulation can reduce errors being agnostic to the type of distortion that 
affected the transmitted symbols.

III. Simulation scenario

A RoF system was simulated in the specialized software VPIphotonicsDesignSuite, where 
RF frequencies were generated in the MMW band at 60, 75 and 82 GHz, for 16-QAM and 
64-QAM modulation formats. In the receiver, asymmetric demodulation based on the SVM 
algorithm was applied in co-simulation with Matlab®. Fig. 9 shows the simulated RoF 
scheme, where a sequence of ~45 thousand symbols were transmitted for each modulation 
format. The bit sequence is represented by raised cosine pulses which were modulated in 
the traditional electrical m-QAM format, then the electrical signal was amplitude modu-
lated in the optical regime, using a Mach-Zehnder modulator (MZM) with ideal param-
eters. The MZM modulates a continuous wave laser centered at 1550 nm. The laser Line-
width (LW) and the transmission rate were varied from 1 KHz to 100 MHz and from 1 to 
10 Gbps, respectively. Once the signal was optically modulated, it is transmitted through 
30 km of standard single-mode optical fiber (distance greater than the 20 km of the GPON 
standard), with commercial parameters (dispersion of 16 ps/nm-km and attenuation of 0.2 
dB/km).
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Then, the conversion from the optical to the electrical domain is performed by a PIN photo-
detector. Asymmetric demodulation using SVM is carried out after applying equalization based 
on the Least Mean Square (LMS) algorithm. Finally, the BER is estimated.

IV. Results and discussions

Fig. 10 shows a demodulation analysis for 16-QAM after LMS equalization, with SVM and 
using traditional demodulation. In traditional demodulation (Fig. 10a) without equalizing, the 
received symbol is classified according to its position in the fixed grid. On the other hand, the 
use of equalization (Fig 10b) allows a mitigation of channel effects. Besides, in Fig. 10c it is 
plotted the constellation diagram with symbol classification using SVM. We can identify dif-
ference among the three cases, when detailing in the overlapped regions.

 
 

 (b)

(c)

(a)

Fig. 10. 16-QAM constellation diagram of received symbols classified by different demodulation techniques: 
a) conventional b) after LMS c) after SVM.

Source: Authors.
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In Fig. 11 it is shown how the BER varies as the length of the optical fiber increases in the 
RoF system transmitting at 1 Gbps in 60 GHz (Fig. 11a; Fig. 11d), 75 GHz (Fig. 11b, Fig. 11e), 
and 82 GHz (Fig. 11c; Fig. 11f) for 16-QAM. A BER comparison is made: when demodulating 
in a traditional way, applying LMS equalization and when demodulating using SVM. A simile 
is also presented in the transmission carried out by a laser with a LW of 1 KHz, which has 
better characteristics than a commercial laser seeking to avoid phase noise in the character-
ization of the system. In this scenario, almost the same results can be obtained using LMS 
equalization and asymmetric demodulation. In Fig. 11f it is observed that for a transmis-
sion distance of 30 km using an 82 GHz RF carrier, with traditional demodulation, a BER of 
1 × 10–4) is achieved, whilst both, LMS equalizer and SVM achieve error-free transmission. 
It can also be noticed that using equalization or SVM, the BER is improved for all distances, 
this demonstrates that the chromatic dispersion is mitigated. Similarly, the same analyzes 
were carried out for a 64-QAM format, Fig. 12 shows a pattern similar to the 16-QAM format, 
since in both cases the demodulation using the SVM algorithm generally presents the best 
results in terms of BER when compared to traditional demodulation. However, for the lat-
ter format, demodulation with SVM is slightly worse compared to demodulation using LMS, 
with a value of for SVM and for LMS. It is also evidenced that for the 64-QAM format, using 
equalization or asymmetric demodulation, it can be guaranteed that the communication is 
error-free at certain distances independent of the RF carrier. On the other hand, it should be 
considered that by using 64-QAM format we can transmit more information, but the signal 
is more sensitive to distortions. 

(a) RF 60 GHz, LW 1 KHz (b) RF 75 GHz, LW 1 KHZ (c) RF 82 GHz, LW 1 KHz

(d) RF 60 GHz, LW 1 MHz (e) RF 75 GHz, LW 1 MHZ (f) RF 82 GHz, LW 1 MHz
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Fig. 11. BER vs Transmission Distance for different demodulation techniques using 16-QAM.
Source: Authors.
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Fig. 12. BER vs Transmission Distance for different demodulation techniques using 64-QAM.
Source: Authors.

Table 1 summarizes minimum BER values ​​achieved for the different configurations. It can 
be noticed that for the case of 1 MHz LW, 30 km of transmission distance, using 64-QAM, 
information can be recovered error-free if the LMS equalizer or SVM-based demodulation is 
used with a 60 GHz or 82 GHz RF carrier.

Table 1. BER for transmission over 30 km with different modulation formats and a LW of 1 MHZ.

Format 60 GHz 75 GHz 82 GHz
16-QAM without equalizing 0 2.216* 5.556*
64-QAM without equalizing 1.052* 2.221* 1.011*
16-QAM with LMS 0 1.104* 0
64-QAM with LMS 0 7.433* 0
16-QAM with SVM 0 3.412* 0
64-QAM with SVM 0 2.535* 0

Source: Authors. 

V. Conclusions

A RoF system was simulated applying asymmetric demodulation based on the SVM algo-
rithm. The results showed mitigation of channel effects when using the ML algorithm, which 
allowed longer transmission distances than conventional demodulation. The proposed asym-
metric demodulation technique presented better performance than traditional demodulation, 
regardless the carrier frequency or the laser linewidth. For 16-QAM, reductions in BER of up 
to 2 orders of magnitude were achieved. Besides, with 64-QAM, operating in the MMW band, 
error-free transmission was obtained in 30 km of transmission distance (RF carrier of 82 GHz). 
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Moreover, using the proposed demodulation technique in systems with laser linewidth around 
1 MHz, the BER showed very similar results as the one whose laser linewidth was 1 kHz, this 
indicates that the use of asymmetric demodulation can reduce equipment costs. Finally, the 
mitigation of distortions carried out by the SVM algorithm is transparent to the channel or 
system impairment, it means that this technique can be implemented in any m-QAM optical 
communication system, therefore, we can point out that the use of this asymmetric demodula-
tion in optical communication would be useful for incoming RoF implementations.
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