
.
© The author; licensee Universidad de la Costa - CUC. 

INGE CUC vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020
Barranquilla. ISSN 0122-6517 Impreso, ISSN 2382-4700 Online

.

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo / 
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

Voracious and Heuristic Algorithms: 
A focus on the Minimum Path Problem

Algoritmos Voraces y Heurísticas: 
Un enfoque en el problema de la Ruta mínima

DOI: http://doi.org/10.17981/ingecuc.16.2.2020.05

Scientific Research Article. Date Received: 08/12/2020. Acceptance Date: 07/05/2020.

Luis Adrián Lasso-Cardona  
Universidad del Valle. Buga (Colombia)

luis.lasso@correounivalle.edu.co

Diego Fernando Franco-Ocampo 
Universidad del Valle. Buga (Colombia)

diego.franco@correounivalle.edu.co

Alexander Agudelo-Acevedo 
Universidad del Valle. Buga (Colombia)
alexander.agudelo@correounivalle.edu.co

Para citar este artículo:
L. Lasso-Cardona, D. Franco-Ocampo & A. Agudelo-Acevedo, “Voracious and Heuristic Algorithms: A  focus on the 
Minimum Path Problem”, INGE CUC, vol. 16, no. 2, pp. 67–85, 2020. DOI: http://doi.org/10.17981/ingecuc.16.2.2020.05

Abstract
Introduction— The problem of the shortest route or 
minimum cost route, has been one of the topics most 
studied by areas of knowledge such as Operations 
Research, Computer Science and Decision, Telecom-
munications, Plant Distribution, Planning of Proj-
ects, among others, searching, for example: optimize 
and reduce the costs that represent the distribution 
of goods, obtain the minimum amount of time nec-
essary to complete a project, or calculate the short-
est possible route between computers connected to a 
network. 
Objective— We will study the behavior of three 
voracious algorithms that allow us to calculate the 
minimum cost route between two points (initial state 
and objective state) in a weighted graph and with 
heuristics. 
Methodoly— Was implemented in Java, and the 
Greedy, A* and Dijkstra algorithms were adjusted to 
the problem in question. Subsequently, two instance 
cases were designed, one negative and one positive. 
Results— In the negative instance results the heu-
ristic of the node was modified to allow the selected 
algorithm to escape from local optima and thus obtain 
a complete result, that is to say reach the objective 
state, which, in some cases, will not necessarily be 
the most optimal result. 
Conclusions— By comparing the three algorithms, 
it was determined that the Dijkstra algorithm always 
yields complete and optimal results. For its part, 
Greedy and A*, need heuristics to reach a complete 
result, but not optimal. 
Keywords— Weighted graph; cost matrix; adjacency 
matrix; optimal route; voracious algorithms; greedy 
search; heuristics; Greedy; A-star; Dijkstra

Resumen
Introducción— El problema de la ruta más corta o 
ruta de mínimo costo, ha sido uno de los temas más 
estudiados por áreas del conocimiento como la Investi-
gación de Operaciones, la Ciencias de la Computación 
y la Decisión, las Telecomunicaciones, la Distribución 
en Planta, la Planeación de Proyectos, entre otras, bus-
cando, por ejemplo: optimizar y reducir los costos que 
representan la distribución de mercancías, obtener la 
mínima cantidad de tiempo necesaria para finalizar 
un proyecto, o calcular la ruta más corta posible entre 
ordenadores conectados a una red. 
Objetivo— Estudiar el comportamiento de tres algo-
ritmos voraces que permiten calcular la ruta de mínimo 
costo entre dos puntos (estado inicial y estado objetivo) 
en un grafo ponderado y con heurísticas. 
Metodología— Se implementó una aplicación en Java, 
y se ajustaron los algoritmos Greedy, A* y Dijkstra al 
problema en cuestión. Posteriormente se diseñaron dos 
casos de instancia, una negativa y otra positiva. 
Resultados— En los resultados de instancia nega-
tiva se modificó la heurística del nodo para permitir 
al algoritmo seleccionado escapar de óptimos locales y 
así, obtener un resultado completo, es decir llegar al 
estado objetivo, que, en algunas ocasiones, no necesa-
riamente será el resultado más óptimo. 
Conclusiones— Mediante la comparación entre los 
tres algoritmos se pudo determinar que el algoritmo 
de Dijkstra siempre arroja resultados completos y ópti-
mos. Por su parte, Greedy y A*, necesitan de heurís-
ticas para llegar a un resultado completo, pero no 
óptimo.
Palabras clave— Grafo ponderado; matriz de costos; 
matriz de adyacencia; ruta óptima; algoritmos vora-
ces; búsqueda codiciosa; heurística; Greedy; A-star; 
Dijkstra
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I. Introduction

The problem of the shortest route (optima), has been one of the topics most studied by areas of 
knowledge such as Operations Research, Telecommunications, Plant Distribution, Project Plan-
ning, among others. For example, one of the most common problems faced by logistics is to optimize 
and reduce the costs that represent the distribution of goods and vehicle maintenance. For business 
and industry, it is essential that the products or services are delivered on time at the best price 
using the shortest route or minimum cost available [1]. In general terms, network problems can 
be classified essentially into five areas: shorter route, maximum flow, minimum expansion tree, 
minimum cost flow, and project planning and control. In this grouping, the problem of the shortest 
route is considered by researchers as a central problem within the network area, due to the variety 
of practical applications, the existence of efficient solution methods and the application of subrou-
tines in the search for a good solution in complex problems [2]. In graph theory there are several 
techniques and algorithms such as the Ford-Fulkerson to solve the problem of maximum flow, the 
Prim algorithm for the problem of the minimum cost generating tree, or the Dijkstra algorithm to 
find the shortest path between two points, given an origin and a destination [3].

The present investigation studied the behavior of three voracious algorithms that allow the 
calculation of the minimum cost path between two points (initial state and objective state) in a 
weighted and heuristic graph of 100 nodes and 160 edges that represent the paths between the 
nodes. To achieve this goal, a Java application was implemented, and the Greedy, A* and Dijkstra 
algorithms were modified in such a way that they allowed to include additional variables such as 
the heuristic value of each node. Furthermore, Dijkstra’s algorithm, which generally calculates 
the minimum path from an initial node to all the nodes of the graph, was improved by making the 
route to be calculated be between an initial node and a target node. 

The research began with a review of the literature that allowed knowing concepts associated 
with the study problem, such as graph theory, and related characteristics. Likewise, the most com-
mon algorithms to find the least cost path between two nodes were identified and described. Sub-
sequently, the algorithms were implemented with the proposed improvements, in such a way that 
they allowed the inclusion of additional variables that expanded their functionality and improved 
their behavior. To check the correct operation of the algorithms, two test cases were carried out. 
The first of negative instance, that is, when it is not possible to reach a target node, and the sec-
ond of positive instance, that is, when it is possible to reach a target node, but not exactly the least 
cost in some scenarios. In addition to the NI and PI cases, two additional test cases were carried 
out, in order to measure and average certain characteristics in the behavior of the implemented 
algorithms. Finally, the conclusions and opportunities for future research were established. 

II. Methodology

The project basically developed in four phases: a) Data collection: an information search was car-
ried out in primary sources, such as bibliographic databases and scientific articles under the terms 
“graph theory”, “voracious algorithms”, “greedy algorithm”, “A-star algorithm”, “Dijkstra algorithm”, 
“minimum path problem” and “optimal route; b) Construction of the theoretical framework: the 
concepts related to the study problem were defined that laid the foundations for the implementa-
tion and improvement of the algorithms used; c) Implementation: an application was developed in 
the Java programming language, and the algorithms were implemented with the improvements 
proposed according to the design built in the previous phase; and d) Commissioning and testing: 
two test cases were carried out. The first of negative instance, that is, when it is not possible to 
reach a target node, and the second of positive instance, that is, when it is possible to reach a tar-
get node, but not exactly the least cost in some scenarios. Likewise, two additional test cases were 
carried out, with the purpose of measuring and averaging certain characteristics in the behavior 
of the implemented algorithms.

III. Theoretical framework

A. Definition of the Graph Concept

In 1736, Euler Örst introduced the notion of graphs, by solving the problem of the Konigsberg 
bridge. Graphics theory is a useful tool for solving problems in different areas such as geometry, 
algebra, number theory, operations research, optimization and computer science [4].
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A graph G = (V, E) is an ordered pair of a finite set of vertices V = {v1, v2, ..., vn} and a set of 
edges E = {e1, e2, ..., en}, such that every edge is an one- or two-element subset of the vertex set. 
We call an edge e ∈ E a loop if it is an one-element subset of V [5].

B. Undirected Graph

A undirected graph is a graph G = (V, E), where V is the set of vertices (nodes) and E is the 
set of edges (arcs). In other words, for a graph G, V(G) and E(G) respectively denote its vertex-
set and the edge-set [6]. A graph is said to be undirected if (vi, vj) ∈ E ⇐⇒ (vj, vi) ∈ E.

When G is unweighted or undirected, we define its adjacency matrix as the n × n matrix A with 
Aij = 1 if vj ∼ vi, and 0 otherwise. For undirected graphs A is symmetric. For weighted graphs, 
Aij = wji [7].

C. Directed Graph

A digraph or directed graph D consists of a non-empty set V(G) of nodes, a set E(G) of directed 
edges, and an incidence function φD that joins each arc of D with an ordered pair of (not neces-
sary distinct) nodes of D. Usually the directed graph is denoted by D = (V, E, φD). If e is an arc 
such that (e) = (u,), then u is called the initial vertex of e and v is called the terminal vertex of 
also e is an arc from u to v. If (e) = (u), then the arc e is called a loop or self-loop [8]. 

D. Weighted graph

A weighted graph is a triple G = (V, E, w) is a graph in which every edge e is assigned a non 
negative number w(e), called the weight of e. A path in a weighted graph G (weighted path) is a 
sequence of vertices and edges with a weight assigned to each edge [9]. In which w: E → R>0 is 
a weight function, where xy ∈ E, and wxy = wyx = 0 [10].

The set of all the neighbors of a node v in G is denoted by NG(v) or simply N(v), and its cardi-
nality by dG(v) or d(v) [11].

Fig. 1. Weighted graph.
Source: Author.

E. Heuristic concept 

There are such complex problems that it is not possible to solve them to find an optimal solu-
tion, but where it is still important to find a good feasible solution that is reasonably close to being 
optimal. In general, a heuristic method or also called approximation algorithm, is a procedure 
that tries to discover a very “good” feasible solution, but not necessarily an optimal solution, for 
the problem. That is why such methods are designed to solve a particular type of problem, such 
as the problem of the shortest route [12], where the use of a heuristic or meta-heuristic provides 
mechanisms to explore regions and escape from the bad local optimum. quality that often differs 
considerably from the overall optimal value [13].

IV. Problem formulation

Given a set of nodes (cities) with values ​​that represent some degree of importance (heuristics), and 
their respective edges (roads that connect the cities) with weight (length in kilometers), trace the 
route that you send to a vehicle throughout of the minimum length trajectory between two cities 
(origin and destination) obtaining a Positive Instance (PI) or a Negative Instance (NI), using a 
Greedy search, the algorithm of A* and the Dijkstra algorithm.

It is said that a PI is the one where the algorithm was able to trace a route (not necessarily 
the most optimal one) between the city of origin (Initial State - IS) and the city of destination 
(Objective State - OS). Otherwise, an NI would be obtained. The latter case is very recurrent 
when using the Greedy search or the A* algorithm.
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Once the route between the IS and the OS is obtained, establish if this route was a PI or an 
NI, comparing the results of the three algorithms, and allowing to modify the heuristic of the 
nodes in those cases when the algorithm used is trapped in optimal local, so that it is possible to 
reach a solution, but not precisely the most optimal in some cases.

According to the results obtained in the theoretical framework, two types of search techniques 
will be used on informed graphs, that is, with a cost and heuristics associated with each node of 
the graph. The first technique focused on using the voracious algorithms A* and Greedy, which 
are guided by a heuristic function that do not always result in the lowest cost path, that is, they 
are not complete or optimal. In the second technique, the uniform cost search was used, taking 
into account only the costs associated with the edges (paths) between nodes, and that yielded a 
complete and optimal result. In this case, Dijkstra’s algorithm was modified, which allows cal-
culating the least-cost route from an initial node to the rest of the graph’s nodes, representing a 
considerable computational and storage expense in large graphs. Modifying the base algorithm 
allowed the initial state node and the target state node as inputs. In addition, storage structures 
were used for the adjacent unselected nodes, the lowest node, the weights of such nodes, and the 
selected node, making the algorithm more selective.

A. Greedy Search

Voracious, avid, fast-forward or greedy algorithms are algorithms that are used primarily to 
solve optimization problems by making short-range decisions based on immediately available 
information, regardless of future consequences [14]. A Greedy algorithm is an algorithm that fol-
lows the problem solving heuristic of making the locally optimal choice at each stage with the hope 
of finding a global optimum. In a Greedy algorithm, the optimal solution is built up one piece at 
a time. At each stage, the best feasible candidate is chosen as the next piece of the solution [15].

Greedy search (in general) proceeds at each step by evaluating each neighbor of the current 
state, and moving to the one with the highest score if doing so improves the score. The set of 
neighbors of each state in the search defines the search space [16]. In a weighted graph, a local 
search iteratively determines a better solution of the environment of the current solution.

An inherent limitation of greedy algorithms is that they lack the foresight to choose subopti-
mal solutions in the current iteration that will allow for better solutions later [17]. Moreover, if 
the number of such neighbor states grows very large, or if each neighbor state takes too long to 
evaluate, even the simple greedy algorithm may not terminate quickly enough [16].

A Greedy algorithm works if a problem exhibit the following two properties: 1) Greedy Choice 
Property: A globally optimal solution can be arrived at by making a locally optimal solution. In 
other words, an optimal solution can be obtained by making “greedy” choices. 2) Optimal Sub-
structure: Optimal solutions contains optimal sub solutions [18].

Every implementation of a Greedy algorithm must have the following elements: 1) The set 
C of candidates or entries. 2) Selection function. Inform what is the most promising element to 
complete the solution. This element will not have been rejected or chosen previously (then it will 
belong to C → S). 3) Feasibility function. Report if a solution can be reached from a set. It applies 
to the selected set united with the most promising element. 4) Objective Function. Returns the 
goodness of the solution found. Normally you want your value to be maximum or minimum. 5) 
Solution function. Check if the candidate subset forms a solution (it does not matter if it is optimal 
or not) [19]. In general, the Greedy search is not optimal and is not complete. It has a complexity 
in time of O(bm), where b = branch factor and m = solution depth. In space, it is O(bm) because 
it stores all the nodes in memory.

The basic scheme of a Greedy algorithm is the following:
Given a finite set of C entries, a Greedy algorithm returns a set S (selected) such that S Є C 

and that, in addition, complies with the constraints of the initial problem. Each set C that satis-
fies the constraints is usually called promising, if it also achieves that the objective function is 
minimized or maximized (as appropriate), then, S is said to be an optimal solution.

This can be represented as [20]:

(1)∑ ( ) =
≤

⎰⎰ ⎰⎰∑ ( ): | | = ,  ∈ ( )
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The scheme of a voracious algorithm can be [21]: 

function Voracious C: set): set
  //C set of candidates
  S ← Ø // initially empty solution
  While ¬solucition(S) ∧ C ≠ Ø do
    x ← select (C) //gets locally optimal candidate
    if feasible (S ∪ {x}) then S ← S ∪ {x}
    else C ← C-{x} // delete candidate
End while 
if solution (S) then 
   v ← value (objective_function (S))
else S ← Ø // empty solution
return (S, v)

B. A* Algorithm (A-star)

It is a search algorithm developed in 1968, which finds the shortest route between two 
points. A* algorithm was initially designed for the graph transversal problems. Later, it was 
commonly used for path finding applications such as computer games, artificial intelligence 
and robotics [22]. A* algorithm is mainly designed to identify an optimal path from a given 
initial position to a given goal position and it combines uniform-cost search (Dijkstra) and 
greedy search algorithms [23]. Compared to other artificial intelligence algorithms it has many 
advantages, such as shorter running time, high efficiency, easy implementation. A* algorithm 
is a progressive global search algorithm, an algorithm from local start searching, through 
local speculation global search [24].

It is said that A* is an informed algorithm, since in each step it decides which branch to 
follow depending on a rule or heuristic. If the selected heuristic is optimal, the complexity of 
the algorithm is reduced to O(n). For this reason, it is widely used for minimal path searches 
[25]. A* algorithm is defined as best-first algorithm, because each node in the configuration 
space is evaluated [26].

The heuristic cost of Algorithm A* is expressed by the estimated function f(n):

(2)( ) = ( ) + ℎ( )

(3)ℎ( ) =  (� −  )2 + ( −  )2      
 

(4)( ) =  �( −  )2 + ( −  )2     

 Where g(n) is the minimum cost from the source node to the current node. h(n) is the mini-
mum cost from the current node to the destination node. nx and ny are the coordinates of the 
current node n. gx and gy are the coordinates of the target node g, sx, and sy are the coordinates 
of the initial node s [27]. A* uses the heuristic function h(n), where h(n) ≥ 0 and calculates its 
value in each node of the work area to obtain the optimal solution, and choose the next best 
step that contains the lowest value of f(n) [28].

The basic scheme of A* algorithm is the following: 1) Set s as source. Do f(s) = g(s) + h(s) = 
0 + h(s) and add node s to the set T. 2) Select the node i of the set T that represents the low-
est value of the function f(i). If there is a tie between the minors f(i), one is chosen arbitrarily, 
but always in favor of the node t. 3) If i = t stop and save i in the set V. 4) If i ≠ t move i the T 
a V and add neighboring nodes j of i. For each link (i, j) with cost cij calculate: f(j) = g(i) + cij + 
h(j). If f(j) was not calculated add node j to T. If j Є T then f(j) was already calculated and its 
value was greater than the current one, update f(j). If j Є V and f(j) current is less than when 
j was marked as closed, update f(j) and move j the V a T. Return to step 2 [29].
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The time complexity of A* depends on the heuristic. In the worst case, the number of nodes 
expanded is exponential in the length of the solution (the shortest path), but it is polynomial 
when the search space is a tree, there is a single goal state, and the heuristic function h meets 
the following condition:

(5)|ℎ( ) − ℎ∗ ( )| = (logℎ∗( ))

Where h* is the optimal heuristic, the exact cost to get from n to the goal. In other words, 
the error of h will not grow faster than the logarithm of the “perfect heuristic” h* that returns 
the true distance from n to the goal [30].

In general, A* is optimal and is complete. It has a complexity in time of O(bm), where 
b = branch factor and m = solution depth. In space, it is O(bm).

C. Dijkstra’s Algorithm

Also called the minimal path algorithm belongs to the group of voracious classical algo-
rithms. It was developed by Edsger Dijkstra in 1959. Dijkstra’s algorithm is a search algorithm 
that computes the single-source shortest path problem for a graph with nonnegative edge path 
costs, producing a shortest path tree. Dijkstra’s algorithm employs the greedy approach to solve 
the single source shortest problem. It repeatedly chooses from the unselected vertices, vertex 
v nearest to source s and announces the distance to be the actual shortest distance from s to 
v [31]. It is important to be clear, that with some adjustments you can get the algorithm to 
indicate the lowest cost between an SI and an OS.

In general, Dijkstra is optimal and is complete. It has a complexity O(n2) where n is the 
number of vertices.

The basic scheme of the Dijkstra algorithm using a priority queue as an auxiliary data 
structure is as follows [3]:

Dijkstra (graph G, source_node s)
for u ∈ V[G] do
  distance [u] = INFINITY
  father_node [u] = NULL
  seen [u] = false
  distance [s] = 0
  insert (queue, (s, distance [s]))
  while queue ≠ Ø do
  u = extract_min (queue)
  seen [u] = true 
  for all v ∈ adjacency[u] do
      if not seen [v] and distance [v] > 
            distance [u] + length (u, v) do
        distance [v] = distance [u] + 
                              length (u, v)
        parent_ node [v] = u
        insert (queue, (v, distance [v]))

In the algorithm, a route will be determined by the sum of all the metrics of all the links 
through which it passes. At the end of exploring all the states, the algorithm calculates among 
all the possible routes generated during the exploration the one with the lowest metric, this 
being the shortest or least cost route. 

D. Implementation

To achieve the research purpose, an application was implemented in the Java programming 
language version 1.8 with a Graphical User Interface (GUI), which shows a map (graph) with 
100 cities (nodes) and their respective routes (160 edges) that connect the cities, which gave 
the user the option to select the city of origin (IS) and the destination (OS), and the algorithm 
that will be used to calculate the minimum cost route.



73

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo / 
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

Fig. 2. Main window of the application.
Source: Authors.

In the graph, each node is assigned a default value (heuristic) that represents some degree of 
importance, and each edge has a default value (weight) that represents the distance in kilome-
ters between each node. In both cases, these values ​​can be modified by the user, as necessary. 
This feature was very useful in cases in which the Greedy search or the A* algorithm resulted 
in an NI, that is, they could not reach a solution, due to the fact that it was not possible to con-
tinue expanding some of the nodes involved in the route between IS and OS.

Once a solution is given to the minimum cost route between IS and OS, either before an PI 
or an NI, the route layout, the arrangement of nodes involved and the total cost (kilometers 
traveled) are shown on the screen. Additionally, the user has the possibility to consult the step 
by step followed by the Greedy search and the A* algorithm.

As mentioned previously, due to the nature of the algorithms, it was necessary to modify their 
characteristics to achieve the goal of obtaining the minimum cost route between two nodes. 
Next, the pseudo-code of the algorithms implemented in the application.

1) Greedy Algorithm

Let IS = Initial State and OS = Target State
Let string neighbors = “”
Let the arrays expanded [ ] and visited [ ]
visited [ ] ∪ IS
While (true) {
  expanded [ ] ∪ first position visited [ ]
  if (OS Є expanded [ ]) break
  remove positions from visited [ ]
  neighbors = search neighbors 
                       lastElement(expanded[ ])
  visited [ ] = neighbors ∉ expanded [ ]
  sort visited [ ]
}
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2) A* Algorithm

Let IS = Initial State and OS = Target State
Let string neighbors = “”
Let the arrays expanded [ ], visited [ ],
costRuta[ ] and functionVisited[ ]
visited [ ] ∪ IS
While (true) {
  expanded [ ] ∪ first position visited [ ]
  if (OS Є expanded [ ]) break
  remove positions from visited [ ]
  neighbors = search neighbors 
                       lastElement(expanded[ ])
  visited [ ] = neighbors ∉ expanded [ ]
  costRuta[ ] = getCostRuta(visited [ ], 
      lastElement(expanded[ ])) + 
      costRuta[lastElement(expanded[ ])] 
  functionVisited[ ] = 
      heuristic of each element of visited [ ] +
      costRuta[ ] the visited [ ]
  sort visited [ ] by functionVisited[ ]
  remove positions from functionVisited[ ]
} 

3) Dijkstra’s algorithm

function Dijkstra (matrizCosts [ ] [ ], origin, destination) {
  string adyacentNoSelect = “”; set conjuntoS[ ]
  fill (pathNodes[ ], “”)
  fill (vectorWeight [ ], Integer.MAX_VALUE)
  fill (nodeSelect, false)
  vectorWeight [origin] = 0
  while(conjuntoS ¬contains(destination)){
     nodeMinWeight = getNodeMinWeight ()
     nodeSelect [nodeMinWeight] = true
     adyacentNoSelect = getAdyacentNoSelect(conjuntoS, getAdyacent(nodeMinWeight))
     indexVW = nodeMinWeight
     for index < length(adyacentNoSelect){
       colum = getAdyacentNoSelect (index)
       if(vectorWeight [indexVW] + matrizCosts [indexVW][colum] < vectorWeight [colum]){
             vectorWeight [colum] = vectorWeight [indexVW] + matrizCosts [indexVW][colum]
            pathNodes [colum] = nodeMinWeight
          }
       }
     }
 return getPath(origin, destination)
}
function getPath(origin, destination){
  string path = destination; string originAux = origin			   	
  while(originAux ≠ destination){ 			 
    origin = pathNodes [destination]
    path ∪ origin 			 
    destination = origin
  }
  return reverse(path)
}
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V. Results

The obtaining of results is divided into two procedures: the first is focused on test cases with 
results of NI, and the second with results of PI, both with the same input values. With the help 
of these two examples, it is possible to demonstrate that by modifying the information (heuristic) 
provided to an algorithm, it manages to reach an PI, but not necessarily the most optimal route.

Inputs: IS = node 1, OS = node 79

A. Negative Instance (NI)

For the NI test case, it was shown that the Greedy and A* algorithms do not arrive at a posi-
tive response (arriving at OS), being stuck in local optima.

1) Solution by Greedy

Output:

Fig. 3. Greedy error. NI case.
Source: Authors.

Using Greedy was not possible to get a positive response (reach the OS). In the route traced 
by the algorithm (Fig. 4), it is observed that in the impossibility of expanding node 74 (its neigh-
bors had been expanded), which does not allow reaching the OS (Table 1).

Fig. 4. Route traced by Greedy. NI case.
Source: Authors.
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Table 1. Step-by-step Greedy. NI case. 

Expanded Neighbors Visited
1 2, 16, 17 17, 2, 16
17 1, 13, 18 18, 13
18 13, 17, 21, 22 13, 22, 21

13 9, 15, 17, 18, 
22 9, 22, 15

9 8, 13, 24, 25, 
62, 74

8, 74, 25, 24, 
62

8 9, 25, 63, 65, 
67, 98

65, 63, 25, 
98, 67

65 8, 23 23
23 22, 65 22

22 13, 18, 21, 
23, 54, 66, 99 66, 99, 54, 21

66 22, 38 38

38 37, 66, 67, 
84, 99, 100

37, 99, 100, 
84, 67

37 38, 68, 69 68, 69
68 11, 37 11

11 35, 68, 70, 
71, 98 98, 70, 71, 35

98 8, 11, 36 36
36 61, 63, 98 63, 61

63 8, 25, 36, 64, 
72 72, 25, 64

72 5, 63, 76 76, 5
76 5, 32, 72 5, 32
5 27, 64, 72, 76 27, 64
27 5, 6, 26 26, 6
26 4, 27, 64 4, 64

4 3, 20, 26, 64, 
74 74, 3, 20, 64

74 4, 9 -
Can’t find solution.
Impossible to continue expanding node (74)

Source: Authors.

2) Solution by A*

Output:

Fig. 5. A* error. NI case.
Source: Authors.

Like Greedy, with A* it was not possible to get a positive response (reach the OS), in this 
case due to the impossibility of expanding at node 99 (its neighbors had been expanded) (Fig. 
6).
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Fig. 6. Route traced by A*. NI case.
Source: Authors.

Table 2. Step-by-step A*. NI case. 

Expanded Neighbors Visited
1 2, 16, 17 17, 2, 16
17 1, 13, 18 18, 13

18 13, 17, 21, 
22 13, 22, 21

13 9, 15, 17, 18, 
22 9, 22, 15

9 8, 13, 24, 25, 
62, 74

25, 24, 74, 
8, 62

25 8, 9, 63 8, 63

8 9, 25, 63, 65, 
67, 98

65, 63, 98, 
67

65 8, 23 23
23 22, 65 22

22
13, 18, 21, 
23, 54, 66, 
99

66, 21, 99, 
54

66 22, 38 38

38 37, 66, 67, 
84, 99, 100

99, 37, 84, 
100, 67

99 22, 38 -
Can’t find solution.
Impossible to continue expanding node (99)

Source: Authors.
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B. Positive Instance (PI)

1) Solution by Dijkstra

Output:

Fig. 7. Route traced by Dijkstra. PI case.
Source: Authors.

Full path: 1-17-18-22-54-100-85-45-46-91-79

Cost: 1215

The Dijkstra algorithm yielded a positive response that is complete, being also the most 
optimal, since the result obtained corresponds to the minimum cost route between IS and 
OS according to the costs specified as input.

2) Solution by Greedy

In order for Greedy’s algorithm to achieve a positive instance, one of the possibilities is 
to modify the heuristic of node 74 (h = 237) to h = 100, so that it is less than the heuristic 
of node 8 (h = 214) and node 25 (h = 264) (Fig. 8), which allows modifying the previous path 
and reaching the OS (Fig. 9). Table 3 shows the step-by-step algorithm.

Output:
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Fig. 8. Modification of heuristics. IP case.
Source: Authors.

Fig. 9. Route traced by Greedy. PI case.
Source: Authors.
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Table 3. Step-by-step Greedy. PI case. 

Expanded Neighbors Visited
1 2, 16, 17 17, 2, 16
17 1, 13, 18 18, 13
18 13, 17, 21, 22 13, 22, 21

13 9, 15, 17, 18, 
22 9, 22, 15

9 8, 13, 24, 25, 
62, 74

74, 8, 25, 24, 
62

74 4, 9 4

4 3, 20, 26, 64, 
74 26, 3, 20, 64

26 4, 27, 64 27, 64
27 5, 6, 26 5, 6
5 27, 64, 72, 76 72, 76, 64
72 5, 63, 76 63, 76

63 8, 25, 36, 64, 
72 8, 25, 36, 64

8 9, 25, 63, 65, 
67, 98 65, 25, 98, 67

65 8, 23 23
23 22, 65 22

22 13, 18, 21, 23, 
54, 66, 99 66, 99, 54, 21

66 22, 38 38

38 37, 66, 67, 84, 
99, 100

37, 99, 100, 84, 
67

37 38, 68, 69 68, 69
68 11, 37 11

11 35, 68, 70, 71, 
98 98, 70, 71, 35

98 8, 11, 36 36
36 61, 63, 98 61
61 32, 33, 36 33, 32
33 35, 59, 61, 73 73, 59, 35
73 10, 33, 71 10, 71
10 31, 34, 73, 92 92, 34, 31
92 10, 95, 96 96, 95
96 34, 55, 92 55, 34
55 53, 95, 96 53, 95

53 34, 55, 56, 71, 
77 77, 56, 34, 71

77 52, 53, 71 52, 71
52 51, 56, 77, 97 51, 56, 97
51 52, 70, 78 70, 78
70 11, 51, 69 69
69 37, 70, 78 78
78 51, 69, 84, 91 91, 84
91 14, 46, 78, 79 79, 46, 14
Full path: 1-17-18-13-9-74-4-26-27-5-72-63-8-65-23-
22-66-38-37-68-11-98-36-61-33-73-10-92-96-55-53-
77-52-51-70-69-78-91-79
Cost: 8812 (sum of the heuristics)

Source: Authors.
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Clearly it is observed that Dijkstra delivers a lower route cost, which is effectively the pur-
pose.

3) Solution by A*

In the case of A*, it was necessary to modify the heuristics of node 99 (h = 228) to h = 350, 
so that it is greater than the heuristics of node 66 (h = 65) and node 38 (h = 238), and again 
the heuristic of node 74 (h = 237) to h = 100, so that it is less than the heuristic of node 4 
(h = 239), allowing modifying the previous route and reaching the OS (Fig. 10). Table 4 shows 
the step-by-step algorithm. 

Output:

Fig. 10. Route traced by A*. PI case. 
Source: Authors

Table 4. Step-by-step A*. PI case. 

Expanded Neighbors Visited
1 2, 16, 17 17, 2, 16
17 1, 13, 18 18, 13
18 13, 17, 21, 22 13, 22, 21
13 9, 15, 17, 18, 22 9, 22, 15
9 8, 13, 24, 25, 62, 74  74, 25, 24, 8, 62
74 4, 9 4
4 3, 20, 26, 64, 74 26, 3, 20, 64
26 4, 27, 64  27, 64
27 5, 6, 26  5, 6



82

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

Expanded Neighbors Visited
5 27, 64, 72, 76 72, 76, 64
72 5, 63, 76 76, 63
76 5, 32, 72 32
32 6, 61, 76 61, 6
61 32, 33, 36 33, 36
33 35, 59, 61, 73 73, 59, 35
73 10, 33, 71 10, 71
10 31, 34, 73, 92 92, 34, 31
92 10, 95, 96 96, 95
96 34, 55, 92 55, 34
55 53, 95, 96 53, 95
53 34, 55, 56, 71, 77 56, 77, 34, 71
56 52, 53, 95, 97 95, 52, 97
95 55, 56, 92, 94 94
94 57, 58, 95 58, 57
58 93, 94 93
93 57, 58, 83 57, 83
57 50, 93, 94 50
50 14, 57, 79, 83 79, 83, 14
Full path: 1-17-18-13-9-74-4-26-27-5-72-76-32-61-33-73-10-92-96-55-53-56-
95-94-58-93-57-50-79
Cost: 3805

Source: Authors.

As can be seen in the results of Table 3 and Table 4, A* performs fewer node expansions, which 
reduces the number of operations when calculating the (adjacent) neighbors of the expanded 
node, and the visited nodes, making the space in memory be less. On the other hand, like 
Greedy, A* offers a positive response thanks to the modification of the heuristic. Furthermore, 
A* calculated a route with fewer nodes between the IS and the OS, being more optimal than 
Greedy, but not exceeding Dijkstra, that is, almost complete and optimal.

C. Test cases

In addition to the NI and PI cases, two additional test cases were carried out, in order to 
measure and average certain characteristics in the behavior of the implemented algorithms. 
These results allow us to identify that Greedy and A* behave computationally in a very similar 
way. The opposite occurs with Dijkstra, where the measured characteristics were much higher, 
reflecting that its property of being complete has a correlation with the consumption of resources 
both in memory, and in the number of instructions that the CPU must execute to achieve the 
best result according to the input parameters.

The quantified characteristics were:
a)	 Number of assignments: Refers to any operation that changes the value of a variable or posi-

tion in a data structure.
b)	 Number of comparisons: Refers to the use of relational operators and similar functions of 

the programming language.
c)	 Number of operations on data structures: Any operation carried out on a data structure.
d)	 Number of nodes in the final path: This reflects the number of nodes required to reach the 

SO.
e)	 Cost: Value in distance and what represents the heuristics of each node in the case of Greedy.

The algorithm execution time was not taken into account, since it is a measure that is closely 
related to the hardware and software characteristics of the computer where the algorithms are 
executed.
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Table 5. Test case results. 

Algorit. Num. 
Assign.

Num. 
Comp.

Num. Oper. 
data struc.

Num. Nodes 
end path Cost

Test case 1: IS = 1 and OS = 79
Greedy 8469 8203 711 39 8812
A* 6402 6224 1090 29 3805
Dijkstra 46926 50513 17792 11 1215

Test case 2: IS = 1 and OS = 83
Greedy 9999 9699 823 46 10628
A* 5948 5782 1019 27 3364
Dijkstra 56645 63601 21281 13 1484

Test case 3: IS = 15 and OS = 94
Greedy 8905 8631 742 41 9687
A* 4822 4685 853 22 2801
Dijkstra 57050 64136 21436 11 1346

Source: Authors.

Fig. 11. Average test cases.
Source: Authors.

IV. Conclusions

The test cases allowed to show that, although it is true, the three algorithms used for the 
study have the same objective, their behavior differs depending on the value of the heuristic 
assigned to them, except for the Dijkstra algorithm. Obviously it is observed that the best 
algorithm to solve the problem of the shortest route is Dijkstra, which, being a complete algo-
rithm, in addition to delivering a positive response, offers an optimal response with the lowest 
cost according to the weights associated with the edges, but showing that its computational 
cost is very high when the graph is large.

On the other hand, for some information inputs, both the Dijkstra and A* algorithms 
offer the same complete and optimal positive response, with the difference that A* needs 
the heuristic to achieve Dijkstra. In this aspect, if the input information for the Greedy 
algorithm is modified, we can achieve great improvements achieving a positive response, 
without necessarily becoming optimal. That is to say, Greedy is not totally incomplete, being 
dependent on the heuristic. That is why heuristics is a fundamental factor to be taken into 
account when using voracious algorithms. With variations in the heuristics, better results 
are obtained.
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On the other hand, the research laid the theoretical and practical bases for the future study 
and improvement of other algorithms related to the problem in question, opening new oppor-
tunities for future research, in which more current techniques such as Artificial Intelligence, 
Machine Learning and Deep Learning, that allow to include more variables and restrictions, 
and achieve an optimal result computationally in larger cases.

Finally, it can be concluded that given the need to implement increasingly fast and efficient 
computer systems, it is essential that algorithms that solve highly complex optimization prob-
lems apply techniques that improve their performance making them more complete and opti-
mal, and in this aspect metaheuristics provide better tactics to create heuristics that prevent 
them from being trapped in local optima that differ from the overall optimum value.
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