
.
© The author; licensee Universidad de la Costa - CUC.

INGE CUC vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020
Barranquilla. ISSN 0122-6517 Impreso, ISSN 2382-4700 Online

.

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

Voracious and Heuristic Algorithms:
A focus on the Minimum Path Problem

Algoritmos Voraces y Heurísticas:
Un enfoque en el problema de la Ruta mínima

DOI: http://doi.org/10.17981/ingecuc.16.2.2020.05

Scientific Research Article. Date Received: 08/12/2020. Acceptance Date: 07/05/2020.

Luis Adrián Lasso-Cardona
Universidad del Valle. Buga (Colombia)

luis.lasso@correounivalle.edu.co

Diego Fernando Franco-Ocampo
Universidad del Valle. Buga (Colombia)

diego.franco@correounivalle.edu.co

Alexander Agudelo-Acevedo
Universidad del Valle. Buga (Colombia)
alexander.agudelo@correounivalle.edu.co

Para citar este artículo:
L. Lasso-Cardona, D. Franco-Ocampo & A. Agudelo-Acevedo, “Voracious and Heuristic Algorithms: A focus on the
Minimum Path Problem”, INGE CUC, vol. 16, no. 2, pp. 67–85, 2020. DOI: http://doi.org/10.17981/ingecuc.16.2.2020.05

Abstract
Introduction— The problem of the shortest route or
minimum cost route, has been one of the topics most
studied by areas of knowledge such as Operations
Research, Computer Science and Decision, Telecom-
munications, Plant Distribution, Planning of Proj-
ects, among others, searching, for example: optimize
and reduce the costs that represent the distribution
of goods, obtain the minimum amount of time nec-
essary to complete a project, or calculate the short-
est possible route between computers connected to a
network.
Objective— We will study the behavior of three
voracious algorithms that allow us to calculate the
minimum cost route between two points (initial state
and objective state) in a weighted graph and with
heuristics.
Methodoly— Was implemented in Java, and the
Greedy, A* and Dijkstra algorithms were adjusted to
the problem in question. Subsequently, two instance
cases were designed, one negative and one positive.
Results— In the negative instance results the heu-
ristic of the node was modified to allow the selected
algorithm to escape from local optima and thus obtain
a complete result, that is to say reach the objective
state, which, in some cases, will not necessarily be
the most optimal result.
Conclusions— By comparing the three algorithms,
it was determined that the Dijkstra algorithm always
yields complete and optimal results. For its part,
Greedy and A*, need heuristics to reach a complete
result, but not optimal.
Keywords— Weighted graph; cost matrix; adjacency
matrix; optimal route; voracious algorithms; greedy
search; heuristics; Greedy; A-star; Dijkstra

Resumen
Introducción— El problema de la ruta más corta o
ruta de mínimo costo, ha sido uno de los temas más
estudiados por áreas del conocimiento como la Investi-
gación de Operaciones, la Ciencias de la Computación
y la Decisión, las Telecomunicaciones, la Distribución
en Planta, la Planeación de Proyectos, entre otras, bus-
cando, por ejemplo: optimizar y reducir los costos que
representan la distribución de mercancías, obtener la
mínima cantidad de tiempo necesaria para finalizar
un proyecto, o calcular la ruta más corta posible entre
ordenadores conectados a una red.
Objetivo— Estudiar el comportamiento de tres algo-
ritmos voraces que permiten calcular la ruta de mínimo
costo entre dos puntos (estado inicial y estado objetivo)
en un grafo ponderado y con heurísticas.
Metodología— Se implementó una aplicación en Java,
y se ajustaron los algoritmos Greedy, A* y Dijkstra al
problema en cuestión. Posteriormente se diseñaron dos
casos de instancia, una negativa y otra positiva.
Resultados— En los resultados de instancia nega-
tiva se modificó la heurística del nodo para permitir
al algoritmo seleccionado escapar de óptimos locales y
así, obtener un resultado completo, es decir llegar al
estado objetivo, que, en algunas ocasiones, no necesa-
riamente será el resultado más óptimo.
Conclusiones— Mediante la comparación entre los
tres algoritmos se pudo determinar que el algoritmo
de Dijkstra siempre arroja resultados completos y ópti-
mos. Por su parte, Greedy y A*, necesitan de heurís-
ticas para llegar a un resultado completo, pero no
óptimo.
Palabras clave— Grafo ponderado; matriz de costos;
matriz de adyacencia; ruta óptima; algoritmos vora-
ces; búsqueda codiciosa; heurística; Greedy; A-star;
Dijkstra

http://doi.org/10.17981/ingecuc.16.2.2020.05
https://orcid.org/0000-0002-3354-1554
https://orcid.org/0000-0002-4797-8263
https://orcid.org/0000-0003-2200-349
http://doi.org/10.17981/ingecuc.16.2.2020.05

68

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

I. Introduction

The problem of the shortest route (optima), has been one of the topics most studied by areas of
knowledge such as Operations Research, Telecommunications, Plant Distribution, Project Plan-
ning, among others. For example, one of the most common problems faced by logistics is to optimize
and reduce the costs that represent the distribution of goods and vehicle maintenance. For business
and industry, it is essential that the products or services are delivered on time at the best price
using the shortest route or minimum cost available [1]. In general terms, network problems can
be classified essentially into five areas: shorter route, maximum flow, minimum expansion tree,
minimum cost flow, and project planning and control. In this grouping, the problem of the shortest
route is considered by researchers as a central problem within the network area, due to the variety
of practical applications, the existence of efficient solution methods and the application of subrou-
tines in the search for a good solution in complex problems [2]. In graph theory there are several
techniques and algorithms such as the Ford-Fulkerson to solve the problem of maximum flow, the
Prim algorithm for the problem of the minimum cost generating tree, or the Dijkstra algorithm to
find the shortest path between two points, given an origin and a destination [3].

The present investigation studied the behavior of three voracious algorithms that allow the
calculation of the minimum cost path between two points (initial state and objective state) in a
weighted and heuristic graph of 100 nodes and 160 edges that represent the paths between the
nodes. To achieve this goal, a Java application was implemented, and the Greedy, A* and Dijkstra
algorithms were modified in such a way that they allowed to include additional variables such as
the heuristic value of each node. Furthermore, Dijkstra’s algorithm, which generally calculates
the minimum path from an initial node to all the nodes of the graph, was improved by making the
route to be calculated be between an initial node and a target node.

The research began with a review of the literature that allowed knowing concepts associated
with the study problem, such as graph theory, and related characteristics. Likewise, the most com-
mon algorithms to find the least cost path between two nodes were identified and described. Sub-
sequently, the algorithms were implemented with the proposed improvements, in such a way that
they allowed the inclusion of additional variables that expanded their functionality and improved
their behavior. To check the correct operation of the algorithms, two test cases were carried out.
The first of negative instance, that is, when it is not possible to reach a target node, and the sec-
ond of positive instance, that is, when it is possible to reach a target node, but not exactly the least
cost in some scenarios. In addition to the NI and PI cases, two additional test cases were carried
out, in order to measure and average certain characteristics in the behavior of the implemented
algorithms. Finally, the conclusions and opportunities for future research were established.

II. Methodology

The project basically developed in four phases: a) Data collection: an information search was car-
ried out in primary sources, such as bibliographic databases and scientific articles under the terms
“graph theory”, “voracious algorithms”, “greedy algorithm”, “A-star algorithm”, “Dijkstra algorithm”,
“minimum path problem” and “optimal route; b) Construction of the theoretical framework: the
concepts related to the study problem were defined that laid the foundations for the implementa-
tion and improvement of the algorithms used; c) Implementation: an application was developed in
the Java programming language, and the algorithms were implemented with the improvements
proposed according to the design built in the previous phase; and d) Commissioning and testing:
two test cases were carried out. The first of negative instance, that is, when it is not possible to
reach a target node, and the second of positive instance, that is, when it is possible to reach a tar-
get node, but not exactly the least cost in some scenarios. Likewise, two additional test cases were
carried out, with the purpose of measuring and averaging certain characteristics in the behavior
of the implemented algorithms.

III. Theoretical framework

A. Definition of the Graph Concept

In 1736, Euler Örst introduced the notion of graphs, by solving the problem of the Konigsberg
bridge. Graphics theory is a useful tool for solving problems in different areas such as geometry,
algebra, number theory, operations research, optimization and computer science [4].

69

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

A graph G = (V, E) is an ordered pair of a finite set of vertices V = {v1, v2, ..., vn} and a set of
edges E = {e1, e2, ..., en}, such that every edge is an one- or two-element subset of the vertex set.
We call an edge e ∈ E a loop if it is an one-element subset of V [5].

B. Undirected Graph

A undirected graph is a graph G = (V, E), where V is the set of vertices (nodes) and E is the
set of edges (arcs). In other words, for a graph G, V(G) and E(G) respectively denote its vertex-
set and the edge-set [6]. A graph is said to be undirected if (vi, vj) ∈ E ⇐⇒ (vj, vi) ∈ E.

When G is unweighted or undirected, we define its adjacency matrix as the n × n matrix A with
Aij = 1 if vj ∼ vi, and 0 otherwise. For undirected graphs A is symmetric. For weighted graphs,
Aij = wji [7].

C. Directed Graph

A digraph or directed graph D consists of a non-empty set V(G) of nodes, a set E(G) of directed
edges, and an incidence function φD that joins each arc of D with an ordered pair of (not neces-
sary distinct) nodes of D. Usually the directed graph is denoted by D = (V, E, φD). If e is an arc
such that (e) = (u,), then u is called the initial vertex of e and v is called the terminal vertex of
also e is an arc from u to v. If (e) = (u), then the arc e is called a loop or self-loop [8].

D. Weighted graph

A weighted graph is a triple G = (V, E, w) is a graph in which every edge e is assigned a non
negative number w(e), called the weight of e. A path in a weighted graph G (weighted path) is a
sequence of vertices and edges with a weight assigned to each edge [9]. In which w: E → R>0 is
a weight function, where xy ∈ E, and wxy = wyx = 0 [10].

The set of all the neighbors of a node v in G is denoted by NG(v) or simply N(v), and its cardi-
nality by dG(v) or d(v) [11].

Fig. 1. Weighted graph.
Source: Author.

E. Heuristic concept

There are such complex problems that it is not possible to solve them to find an optimal solu-
tion, but where it is still important to find a good feasible solution that is reasonably close to being
optimal. In general, a heuristic method or also called approximation algorithm, is a procedure
that tries to discover a very “good” feasible solution, but not necessarily an optimal solution, for
the problem. That is why such methods are designed to solve a particular type of problem, such
as the problem of the shortest route [12], where the use of a heuristic or meta-heuristic provides
mechanisms to explore regions and escape from the bad local optimum. quality that often differs
considerably from the overall optimal value [13].

IV. Problem formulation

Given a set of nodes (cities) with values ​​that represent some degree of importance (heuristics), and
their respective edges (roads that connect the cities) with weight (length in kilometers), trace the
route that you send to a vehicle throughout of the minimum length trajectory between two cities
(origin and destination) obtaining a Positive Instance (PI) or a Negative Instance (NI), using a
Greedy search, the algorithm of A* and the Dijkstra algorithm.

It is said that a PI is the one where the algorithm was able to trace a route (not necessarily
the most optimal one) between the city of origin (Initial State - IS) and the city of destination
(Objective State - OS). Otherwise, an NI would be obtained. The latter case is very recurrent
when using the Greedy search or the A* algorithm.

70

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

Once the route between the IS and the OS is obtained, establish if this route was a PI or an
NI, comparing the results of the three algorithms, and allowing to modify the heuristic of the
nodes in those cases when the algorithm used is trapped in optimal local, so that it is possible to
reach a solution, but not precisely the most optimal in some cases.

According to the results obtained in the theoretical framework, two types of search techniques
will be used on informed graphs, that is, with a cost and heuristics associated with each node of
the graph. The first technique focused on using the voracious algorithms A* and Greedy, which
are guided by a heuristic function that do not always result in the lowest cost path, that is, they
are not complete or optimal. In the second technique, the uniform cost search was used, taking
into account only the costs associated with the edges (paths) between nodes, and that yielded a
complete and optimal result. In this case, Dijkstra’s algorithm was modified, which allows cal-
culating the least-cost route from an initial node to the rest of the graph’s nodes, representing a
considerable computational and storage expense in large graphs. Modifying the base algorithm
allowed the initial state node and the target state node as inputs. In addition, storage structures
were used for the adjacent unselected nodes, the lowest node, the weights of such nodes, and the
selected node, making the algorithm more selective.

A. Greedy Search

Voracious, avid, fast-forward or greedy algorithms are algorithms that are used primarily to
solve optimization problems by making short-range decisions based on immediately available
information, regardless of future consequences [14]. A Greedy algorithm is an algorithm that fol-
lows the problem solving heuristic of making the locally optimal choice at each stage with the hope
of finding a global optimum. In a Greedy algorithm, the optimal solution is built up one piece at
a time. At each stage, the best feasible candidate is chosen as the next piece of the solution [15].

Greedy search (in general) proceeds at each step by evaluating each neighbor of the current
state, and moving to the one with the highest score if doing so improves the score. The set of
neighbors of each state in the search defines the search space [16]. In a weighted graph, a local
search iteratively determines a better solution of the environment of the current solution.

An inherent limitation of greedy algorithms is that they lack the foresight to choose subopti-
mal solutions in the current iteration that will allow for better solutions later [17]. Moreover, if
the number of such neighbor states grows very large, or if each neighbor state takes too long to
evaluate, even the simple greedy algorithm may not terminate quickly enough [16].

A Greedy algorithm works if a problem exhibit the following two properties: 1) Greedy Choice
Property: A globally optimal solution can be arrived at by making a locally optimal solution. In
other words, an optimal solution can be obtained by making “greedy” choices. 2) Optimal Sub-
structure: Optimal solutions contains optimal sub solutions [18].

Every implementation of a Greedy algorithm must have the following elements: 1) The set
C of candidates or entries. 2) Selection function. Inform what is the most promising element to
complete the solution. This element will not have been rejected or chosen previously (then it will
belong to C → S). 3) Feasibility function. Report if a solution can be reached from a set. It applies
to the selected set united with the most promising element. 4) Objective Function. Returns the
goodness of the solution found. Normally you want your value to be maximum or minimum. 5)
Solution function. Check if the candidate subset forms a solution (it does not matter if it is optimal
or not) [19]. In general, the Greedy search is not optimal and is not complete. It has a complexity
in time of O(bm), where b = branch factor and m = solution depth. In space, it is O(bm) because
it stores all the nodes in memory.

The basic scheme of a Greedy algorithm is the following:
Given a finite set of C entries, a Greedy algorithm returns a set S (selected) such that S Є C

and that, in addition, complies with the constraints of the initial problem. Each set C that satis-
fies the constraints is usually called promising, if it also achieves that the objective function is
minimized or maximized (as appropriate), then, S is said to be an optimal solution.

This can be represented as [20]:

(1)∑ () =
≤

⎰⎰ ⎰⎰∑ (): | | = , ∈ ()

71

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

The scheme of a voracious algorithm can be [21]:

function Voracious C: set): set
 //C set of candidates
 S ← Ø // initially empty solution
 While ¬solucition(S) ∧ C ≠ Ø do
 x ← select (C) //gets locally optimal candidate
 if feasible (S ∪ {x}) then S ← S ∪ {x}
 else C ← C-{x} // delete candidate
End while
if solution (S) then
 v ← value (objective_function (S))
else S ← Ø // empty solution
return (S, v)

B. A* Algorithm (A-star)

It is a search algorithm developed in 1968, which finds the shortest route between two
points. A* algorithm was initially designed for the graph transversal problems. Later, it was
commonly used for path finding applications such as computer games, artificial intelligence
and robotics [22]. A* algorithm is mainly designed to identify an optimal path from a given
initial position to a given goal position and it combines uniform-cost search (Dijkstra) and
greedy search algorithms [23]. Compared to other artificial intelligence algorithms it has many
advantages, such as shorter running time, high efficiency, easy implementation. A* algorithm
is a progressive global search algorithm, an algorithm from local start searching, through
local speculation global search [24].

It is said that A* is an informed algorithm, since in each step it decides which branch to
follow depending on a rule or heuristic. If the selected heuristic is optimal, the complexity of
the algorithm is reduced to O(n). For this reason, it is widely used for minimal path searches
[25]. A* algorithm is defined as best-first algorithm, because each node in the configuration
space is evaluated [26].

The heuristic cost of Algorithm A* is expressed by the estimated function f(n):

(2)() = () + ℎ()

(3)ℎ() = (� −)2 + (−)2

(4)() = �(−)2 + (−)2

 Where g(n) is the minimum cost from the source node to the current node. h(n) is the mini-
mum cost from the current node to the destination node. nx and ny are the coordinates of the
current node n. gx and gy are the coordinates of the target node g, sx, and sy are the coordinates
of the initial node s [27]. A* uses the heuristic function h(n), where h(n) ≥ 0 and calculates its
value in each node of the work area to obtain the optimal solution, and choose the next best
step that contains the lowest value of f(n) [28].

The basic scheme of A* algorithm is the following: 1) Set s as source. Do f(s) = g(s) + h(s) =
0 + h(s) and add node s to the set T. 2) Select the node i of the set T that represents the low-
est value of the function f(i). If there is a tie between the minors f(i), one is chosen arbitrarily,
but always in favor of the node t. 3) If i = t stop and save i in the set V. 4) If i ≠ t move i the T
a V and add neighboring nodes j of i. For each link (i, j) with cost cij calculate: f(j) = g(i) + cij +
h(j). If f(j) was not calculated add node j to T. If j Є T then f(j) was already calculated and its
value was greater than the current one, update f(j). If j Є V and f(j) current is less than when
j was marked as closed, update f(j) and move j the V a T. Return to step 2 [29].

72

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

The time complexity of A* depends on the heuristic. In the worst case, the number of nodes
expanded is exponential in the length of the solution (the shortest path), but it is polynomial
when the search space is a tree, there is a single goal state, and the heuristic function h meets
the following condition:

(5)|ℎ() − ℎ∗ ()| = (logℎ∗())

Where h* is the optimal heuristic, the exact cost to get from n to the goal. In other words,
the error of h will not grow faster than the logarithm of the “perfect heuristic” h* that returns
the true distance from n to the goal [30].

In general, A* is optimal and is complete. It has a complexity in time of O(bm), where
b = branch factor and m = solution depth. In space, it is O(bm).

C. Dijkstra’s Algorithm

Also called the minimal path algorithm belongs to the group of voracious classical algo-
rithms. It was developed by Edsger Dijkstra in 1959. Dijkstra’s algorithm is a search algorithm
that computes the single-source shortest path problem for a graph with nonnegative edge path
costs, producing a shortest path tree. Dijkstra’s algorithm employs the greedy approach to solve
the single source shortest problem. It repeatedly chooses from the unselected vertices, vertex
v nearest to source s and announces the distance to be the actual shortest distance from s to
v [31]. It is important to be clear, that with some adjustments you can get the algorithm to
indicate the lowest cost between an SI and an OS.

In general, Dijkstra is optimal and is complete. It has a complexity O(n2) where n is the
number of vertices.

The basic scheme of the Dijkstra algorithm using a priority queue as an auxiliary data
structure is as follows [3]:

Dijkstra (graph G, source_node s)
for u ∈ V[G] do
 distance [u] = INFINITY
 father_node [u] = NULL
 seen [u] = false
 distance [s] = 0
 insert (queue, (s, distance [s]))
 while queue ≠ Ø do
 u = extract_min (queue)
 seen [u] = true
 for all v ∈ adjacency[u] do
 if not seen [v] and distance [v] >
 distance [u] + length (u, v) do
 distance [v] = distance [u] +
 length (u, v)
 parent_ node [v] = u
 insert (queue, (v, distance [v]))

In the algorithm, a route will be determined by the sum of all the metrics of all the links
through which it passes. At the end of exploring all the states, the algorithm calculates among
all the possible routes generated during the exploration the one with the lowest metric, this
being the shortest or least cost route.

D. Implementation

To achieve the research purpose, an application was implemented in the Java programming
language version 1.8 with a Graphical User Interface (GUI), which shows a map (graph) with
100 cities (nodes) and their respective routes (160 edges) that connect the cities, which gave
the user the option to select the city of origin (IS) and the destination (OS), and the algorithm
that will be used to calculate the minimum cost route.

73

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

Fig. 2. Main window of the application.
Source: Authors.

In the graph, each node is assigned a default value (heuristic) that represents some degree of
importance, and each edge has a default value (weight) that represents the distance in kilome-
ters between each node. In both cases, these values ​​can be modified by the user, as necessary.
This feature was very useful in cases in which the Greedy search or the A* algorithm resulted
in an NI, that is, they could not reach a solution, due to the fact that it was not possible to con-
tinue expanding some of the nodes involved in the route between IS and OS.

Once a solution is given to the minimum cost route between IS and OS, either before an PI
or an NI, the route layout, the arrangement of nodes involved and the total cost (kilometers
traveled) are shown on the screen. Additionally, the user has the possibility to consult the step
by step followed by the Greedy search and the A* algorithm.

As mentioned previously, due to the nature of the algorithms, it was necessary to modify their
characteristics to achieve the goal of obtaining the minimum cost route between two nodes.
Next, the pseudo-code of the algorithms implemented in the application.

1) Greedy Algorithm

Let IS = Initial State and OS = Target State
Let string neighbors = “”
Let the arrays expanded [] and visited []
visited [] ∪ IS
While (true) {
 expanded [] ∪ first position visited []
 if (OS Є expanded []) break
 remove positions from visited []
 neighbors = search neighbors
 lastElement(expanded[])
 visited [] = neighbors ∉ expanded []
 sort visited []
}

74

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

2) A* Algorithm

Let IS = Initial State and OS = Target State
Let string neighbors = “”
Let the arrays expanded [], visited [],
costRuta[] and functionVisited[]
visited [] ∪ IS
While (true) {
 expanded [] ∪ first position visited []
 if (OS Є expanded []) break
 remove positions from visited []
 neighbors = search neighbors
 lastElement(expanded[])
 visited [] = neighbors ∉ expanded []
 costRuta[] = getCostRuta(visited [],
 lastElement(expanded[])) +
 costRuta[lastElement(expanded[])]
 functionVisited[] =
 heuristic of each element of visited [] +
 costRuta[] the visited []
 sort visited [] by functionVisited[]
 remove positions from functionVisited[]
}

3) Dijkstra’s algorithm

function Dijkstra (matrizCosts [] [], origin, destination) {
 string adyacentNoSelect = “”; set conjuntoS[]
 fill (pathNodes[], “”)
 fill (vectorWeight [], Integer.MAX_VALUE)
 fill (nodeSelect, false)
 vectorWeight [origin] = 0
 while(conjuntoS ¬contains(destination)){
 nodeMinWeight = getNodeMinWeight ()
 nodeSelect [nodeMinWeight] = true
 adyacentNoSelect = getAdyacentNoSelect(conjuntoS, getAdyacent(nodeMinWeight))
 indexVW = nodeMinWeight
 for index < length(adyacentNoSelect){
 colum = getAdyacentNoSelect (index)
 if(vectorWeight [indexVW] + matrizCosts [indexVW][colum] < vectorWeight [colum]){
 vectorWeight [colum] = vectorWeight [indexVW] + matrizCosts [indexVW][colum]
 pathNodes [colum] = nodeMinWeight
 }
 }
 }
 return getPath(origin, destination)
}
function getPath(origin, destination){
 string path = destination; string originAux = origin			 	
 while(originAux ≠ destination){ 			
 origin = pathNodes [destination]
 path ∪ origin 			
 destination = origin
 }
 return reverse(path)
}

75

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

V. Results

The obtaining of results is divided into two procedures: the first is focused on test cases with
results of NI, and the second with results of PI, both with the same input values. With the help
of these two examples, it is possible to demonstrate that by modifying the information (heuristic)
provided to an algorithm, it manages to reach an PI, but not necessarily the most optimal route.

Inputs: IS = node 1, OS = node 79

A. Negative Instance (NI)

For the NI test case, it was shown that the Greedy and A* algorithms do not arrive at a posi-
tive response (arriving at OS), being stuck in local optima.

1) Solution by Greedy

Output:

Fig. 3. Greedy error. NI case.
Source: Authors.

Using Greedy was not possible to get a positive response (reach the OS). In the route traced
by the algorithm (Fig. 4), it is observed that in the impossibility of expanding node 74 (its neigh-
bors had been expanded), which does not allow reaching the OS (Table 1).

Fig. 4. Route traced by Greedy. NI case.
Source: Authors.

76

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

Table 1. Step-by-step Greedy. NI case.

Expanded Neighbors Visited
1 2, 16, 17 17, 2, 16
17 1, 13, 18 18, 13
18 13, 17, 21, 22 13, 22, 21

13 9, 15, 17, 18,
22 9, 22, 15

9 8, 13, 24, 25,
62, 74

8, 74, 25, 24,
62

8 9, 25, 63, 65,
67, 98

65, 63, 25,
98, 67

65 8, 23 23
23 22, 65 22

22 13, 18, 21,
23, 54, 66, 99 66, 99, 54, 21

66 22, 38 38

38 37, 66, 67,
84, 99, 100

37, 99, 100,
84, 67

37 38, 68, 69 68, 69
68 11, 37 11

11 35, 68, 70,
71, 98 98, 70, 71, 35

98 8, 11, 36 36
36 61, 63, 98 63, 61

63 8, 25, 36, 64,
72 72, 25, 64

72 5, 63, 76 76, 5
76 5, 32, 72 5, 32
5 27, 64, 72, 76 27, 64
27 5, 6, 26 26, 6
26 4, 27, 64 4, 64

4 3, 20, 26, 64,
74 74, 3, 20, 64

74 4, 9 -
Can’t find solution.
Impossible to continue expanding node (74)

Source: Authors.

2) Solution by A*

Output:

Fig. 5. A* error. NI case.
Source: Authors.

Like Greedy, with A* it was not possible to get a positive response (reach the OS), in this
case due to the impossibility of expanding at node 99 (its neighbors had been expanded) (Fig.
6).

77

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

Fig. 6. Route traced by A*. NI case.
Source: Authors.

Table 2. Step-by-step A*. NI case.

Expanded Neighbors Visited
1 2, 16, 17 17, 2, 16
17 1, 13, 18 18, 13

18 13, 17, 21,
22 13, 22, 21

13 9, 15, 17, 18,
22 9, 22, 15

9 8, 13, 24, 25,
62, 74

25, 24, 74,
8, 62

25 8, 9, 63 8, 63

8 9, 25, 63, 65,
67, 98

65, 63, 98,
67

65 8, 23 23
23 22, 65 22

22
13, 18, 21,
23, 54, 66,
99

66, 21, 99,
54

66 22, 38 38

38 37, 66, 67,
84, 99, 100

99, 37, 84,
100, 67

99 22, 38 -
Can’t find solution.
Impossible to continue expanding node (99)

Source: Authors.

78

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

B. Positive Instance (PI)

1) Solution by Dijkstra

Output:

Fig. 7. Route traced by Dijkstra. PI case.
Source: Authors.

Full path: 1-17-18-22-54-100-85-45-46-91-79

Cost: 1215

The Dijkstra algorithm yielded a positive response that is complete, being also the most
optimal, since the result obtained corresponds to the minimum cost route between IS and
OS according to the costs specified as input.

2) Solution by Greedy

In order for Greedy’s algorithm to achieve a positive instance, one of the possibilities is
to modify the heuristic of node 74 (h = 237) to h = 100, so that it is less than the heuristic
of node 8 (h = 214) and node 25 (h = 264) (Fig. 8), which allows modifying the previous path
and reaching the OS (Fig. 9). Table 3 shows the step-by-step algorithm.

Output:

79

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

Fig. 8. Modification of heuristics. IP case.
Source: Authors.

Fig. 9. Route traced by Greedy. PI case.
Source: Authors.

80

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

Table 3. Step-by-step Greedy. PI case.

Expanded Neighbors Visited
1 2, 16, 17 17, 2, 16
17 1, 13, 18 18, 13
18 13, 17, 21, 22 13, 22, 21

13 9, 15, 17, 18,
22 9, 22, 15

9 8, 13, 24, 25,
62, 74

74, 8, 25, 24,
62

74 4, 9 4

4 3, 20, 26, 64,
74 26, 3, 20, 64

26 4, 27, 64 27, 64
27 5, 6, 26 5, 6
5 27, 64, 72, 76 72, 76, 64
72 5, 63, 76 63, 76

63 8, 25, 36, 64,
72 8, 25, 36, 64

8 9, 25, 63, 65,
67, 98 65, 25, 98, 67

65 8, 23 23
23 22, 65 22

22 13, 18, 21, 23,
54, 66, 99 66, 99, 54, 21

66 22, 38 38

38 37, 66, 67, 84,
99, 100

37, 99, 100, 84,
67

37 38, 68, 69 68, 69
68 11, 37 11

11 35, 68, 70, 71,
98 98, 70, 71, 35

98 8, 11, 36 36
36 61, 63, 98 61
61 32, 33, 36 33, 32
33 35, 59, 61, 73 73, 59, 35
73 10, 33, 71 10, 71
10 31, 34, 73, 92 92, 34, 31
92 10, 95, 96 96, 95
96 34, 55, 92 55, 34
55 53, 95, 96 53, 95

53 34, 55, 56, 71,
77 77, 56, 34, 71

77 52, 53, 71 52, 71
52 51, 56, 77, 97 51, 56, 97
51 52, 70, 78 70, 78
70 11, 51, 69 69
69 37, 70, 78 78
78 51, 69, 84, 91 91, 84
91 14, 46, 78, 79 79, 46, 14
Full path: 1-17-18-13-9-74-4-26-27-5-72-63-8-65-23-
22-66-38-37-68-11-98-36-61-33-73-10-92-96-55-53-
77-52-51-70-69-78-91-79
Cost: 8812 (sum of the heuristics)

Source: Authors.

81

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

Clearly it is observed that Dijkstra delivers a lower route cost, which is effectively the pur-
pose.

3) Solution by A*

In the case of A*, it was necessary to modify the heuristics of node 99 (h = 228) to h = 350,
so that it is greater than the heuristics of node 66 (h = 65) and node 38 (h = 238), and again
the heuristic of node 74 (h = 237) to h = 100, so that it is less than the heuristic of node 4
(h = 239), allowing modifying the previous route and reaching the OS (Fig. 10). Table 4 shows
the step-by-step algorithm.

Output:

Fig. 10. Route traced by A*. PI case.
Source: Authors

Table 4. Step-by-step A*. PI case.

Expanded Neighbors Visited
1 2, 16, 17 17, 2, 16
17 1, 13, 18 18, 13
18 13, 17, 21, 22 13, 22, 21
13 9, 15, 17, 18, 22 9, 22, 15
9 8, 13, 24, 25, 62, 74 74, 25, 24, 8, 62
74 4, 9 4
4 3, 20, 26, 64, 74 26, 3, 20, 64
26 4, 27, 64 27, 64
27 5, 6, 26 5, 6

82

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

Expanded Neighbors Visited
5 27, 64, 72, 76 72, 76, 64
72 5, 63, 76 76, 63
76 5, 32, 72 32
32 6, 61, 76 61, 6
61 32, 33, 36 33, 36
33 35, 59, 61, 73 73, 59, 35
73 10, 33, 71 10, 71
10 31, 34, 73, 92 92, 34, 31
92 10, 95, 96 96, 95
96 34, 55, 92 55, 34
55 53, 95, 96 53, 95
53 34, 55, 56, 71, 77 56, 77, 34, 71
56 52, 53, 95, 97 95, 52, 97
95 55, 56, 92, 94 94
94 57, 58, 95 58, 57
58 93, 94 93
93 57, 58, 83 57, 83
57 50, 93, 94 50
50 14, 57, 79, 83 79, 83, 14
Full path: 1-17-18-13-9-74-4-26-27-5-72-76-32-61-33-73-10-92-96-55-53-56-
95-94-58-93-57-50-79
Cost: 3805

Source: Authors.

As can be seen in the results of Table 3 and Table 4, A* performs fewer node expansions, which
reduces the number of operations when calculating the (adjacent) neighbors of the expanded
node, and the visited nodes, making the space in memory be less. On the other hand, like
Greedy, A* offers a positive response thanks to the modification of the heuristic. Furthermore,
A* calculated a route with fewer nodes between the IS and the OS, being more optimal than
Greedy, but not exceeding Dijkstra, that is, almost complete and optimal.

C. Test cases

In addition to the NI and PI cases, two additional test cases were carried out, in order to
measure and average certain characteristics in the behavior of the implemented algorithms.
These results allow us to identify that Greedy and A* behave computationally in a very similar
way. The opposite occurs with Dijkstra, where the measured characteristics were much higher,
reflecting that its property of being complete has a correlation with the consumption of resources
both in memory, and in the number of instructions that the CPU must execute to achieve the
best result according to the input parameters.

The quantified characteristics were:
a)	 Number of assignments: Refers to any operation that changes the value of a variable or posi-

tion in a data structure.
b)	 Number of comparisons: Refers to the use of relational operators and similar functions of

the programming language.
c)	 Number of operations on data structures: Any operation carried out on a data structure.
d)	 Number of nodes in the final path: This reflects the number of nodes required to reach the

SO.
e)	 Cost: Value in distance and what represents the heuristics of each node in the case of Greedy.

The algorithm execution time was not taken into account, since it is a measure that is closely
related to the hardware and software characteristics of the computer where the algorithms are
executed.

83

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

Table 5. Test case results.

Algorit. Num.
Assign.

Num.
Comp.

Num. Oper.
data struc.

Num. Nodes
end path Cost

Test case 1: IS = 1 and OS = 79
Greedy 8469 8203 711 39 8812
A* 6402 6224 1090 29 3805
Dijkstra 46926 50513 17792 11 1215

Test case 2: IS = 1 and OS = 83
Greedy 9999 9699 823 46 10628
A* 5948 5782 1019 27 3364
Dijkstra 56645 63601 21281 13 1484

Test case 3: IS = 15 and OS = 94
Greedy 8905 8631 742 41 9687
A* 4822 4685 853 22 2801
Dijkstra 57050 64136 21436 11 1346

Source: Authors.

Fig. 11. Average test cases.
Source: Authors.

IV. Conclusions

The test cases allowed to show that, although it is true, the three algorithms used for the
study have the same objective, their behavior differs depending on the value of the heuristic
assigned to them, except for the Dijkstra algorithm. Obviously it is observed that the best
algorithm to solve the problem of the shortest route is Dijkstra, which, being a complete algo-
rithm, in addition to delivering a positive response, offers an optimal response with the lowest
cost according to the weights associated with the edges, but showing that its computational
cost is very high when the graph is large.

On the other hand, for some information inputs, both the Dijkstra and A* algorithms
offer the same complete and optimal positive response, with the difference that A* needs
the heuristic to achieve Dijkstra. In this aspect, if the input information for the Greedy
algorithm is modified, we can achieve great improvements achieving a positive response,
without necessarily becoming optimal. That is to say, Greedy is not totally incomplete, being
dependent on the heuristic. That is why heuristics is a fundamental factor to be taken into
account when using voracious algorithms. With variations in the heuristics, better results
are obtained.

84

Voracious and Heuristic Algorithms: A focus on the Minimum Path Problem

On the other hand, the research laid the theoretical and practical bases for the future study
and improvement of other algorithms related to the problem in question, opening new oppor-
tunities for future research, in which more current techniques such as Artificial Intelligence,
Machine Learning and Deep Learning, that allow to include more variables and restrictions,
and achieve an optimal result computationally in larger cases.

Finally, it can be concluded that given the need to implement increasingly fast and efficient
computer systems, it is essential that algorithms that solve highly complex optimization prob-
lems apply techniques that improve their performance making them more complete and opti-
mal, and in this aspect metaheuristics provide better tactics to create heuristics that prevent
them from being trapped in local optima that differ from the overall optimum value.

Financing

Scientific research article derived from the research project “Evaluation of minimum route
methods in a weighted and heuristic graph”, prepared by the SIEL (Research and Development
in Information Systems and Electronics) Study Seedbed of the Universidad del Valle (Buga,
Colombia). Start year: 2018, end year: 2019.

References

[1]	 N. Ojekudo & N. Akpan, “Anapplication of Dijkstra’s Algorithm to shortest route problem”, IOSR-JM,
vol. 13, no. 3, pp. 20–32, 2017. Available: http://iosrjournals.org/iosr-jm/pages/v13(3)Version-1.html

[2]	 B. Obregón, “Teoría de redes: El problema de la ruta más corta”, tesis magistral, prog. ing., UNAM,
CDMX, MX. 2005. Available at: http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/hand-
le/132.248.52.100/539/obregonquintana.pdf?sequence=12

[3]	 J. Barelles, “Algoritmos para la resolución de problemas en redes”, trabajo grado, dpto Mat Comp, UJI,
Cast, Esp, 2017. Available from http://repositori.uji.es/xmlui/bitstream/handle/10234/173687/TFG_2017_
BarellesMenes_Jorge.pdf?sequence=1&isAllowed=y

[4]	 Y. Talebiy & H. Rashmanlouz, “Application Of Dominating Sets In Vague Graphs”, Appl Math E-Notes,
vol. 17, pp. 251–267, 2017. Available from https://www.emis.de/journals/AMEN/2017/AMEN-170503.pdf

[5]	 M. Dod, “Domination in graphs with application to network reliability”, Thesis Doctor, Fac Math Comp
Sci, FUMT, Fog, DE, 2015. Available from https://tubaf.qucosa.de/api/qucosa%3A23011/attachment/
ATT-0/

[6]	 S. Guze, “An application of the selected graph theory domination concepts to transportation networks
modelling”, Zesz Nauk Uniw Rzesz, vol. 52, no. 124, pp. 97–102, 2017. https://doi.org/10.17402/250

[7]	 S. Vishwanathan, N. Schraudolph, R. Kondor & K. Borgwardt, “Graph Kernels”, JMLR, vol. 11, pp.
1201–1242, 2010. Available from http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanatha-
n10a.pdf

[8]	 K. Abdulkalek & A. Kilicman, “Topologies on the Edges Set of Directed Graphs”, Int J Math Anal, vol.
12, no. 2, pp. 71–84, 2018. https://doi.org/10.12988/ijma.2018.814

[9]	 N. Jicy & M. Sunil, “Some new connectivity parameters for weighted graphs”, J Uncertain Math Sci, pp.
1–9, 2014. Available: https://www.researchgate.net/publication/263773151_Some_new_connectivity_pa-
rameters_for_weighted_graphs_Some_new_connectivity_parameters_for_weighted_graphs

[10]	 A. Ban, “Decomposing Weighted Graphs”, JGT, vol. 86, no. 2, pp. 250–254, 2017. https://doi.org/10.1002/
jgt.22124

[11]	 S. Mathew, “Partial trees in weighted graphs-I”, Proyecciones J Math, vol. 30, no. 2, pp. 163–174, 2011.
http://dx.doi.org/10.4067/S0716-09172011000200003

[12]	C. Salas, “Un Algoritmo de Dos Fases para la Optimización de Costos en el Traslado de Cargas con
Exceso de Dimensiones”, Tesis magistral, UAEH, HGO, MX, 2014. Disponible en http://dgsa.uaeh.edu.
mx:8080/bibliotecadigital/bitstream/handle/231104/1918/AT18381.pdf?sequence=3&isAllowed=y

[13]	 G. González & F. González, “Metaheurísticas aplicadas al ruteo de vehículos. Un caso de estudio. Parte
2: algoritmo genético, comparación con una solución heurística”, Rev Ing Inv, vol. 27, no. 1, pp. 149–157,
2007. Available from https://revistas.unal.edu.co/index.php/ingeinv/article/view/14795/15626

[14]	 L. Rodríguez & A. Varona. Técnicas de diseño de algoritmos. Algoritmos voraces. (2015). Curso de in-
formática. PV, Esp: UPV. Recuperado de https://ocw.ehu.eus/pluginfile.php/46102/mod_resource/con-
tent/1/03_Algoritmos_Voraces/03_Algoritmos_Voraces.pdf

[15]	A. Subhadra, “Greedy Algorithms: Analysis, Design & Applications”, IJIFR, vol. 3, no. 5, pp. 1749–1764,
2016. Available: https://www.academia.edu/21855750/Greedy_Algorithms_Analysis_Design_and_Appli-
cations

[16]	 D. Maxwell, “Optimal Structure Identification With Greedy Search”, JMLR, vol. 3, pp. 507–554, 2002.
Available: https://www.jmlr.org/papers/v3/chickering02b.html

[17]	 B. Simmons, C. Hoeppke & W. Sutherland, “Sutherland. Beware greedy algorithms”, J Anim Ecol, vol.
88, no. 5, pp. 804–807, 2019. https://doi.org/10.1111/1365-2656.12963

[18]	A. Malik, A. Sharma & V. Saroha, “Greedy Algorithm”, IJSRP, vol. 3, no. 8, pp. 1–5, 2013. Available:
http://www.ijsrp.org/research-paper-0813.php?rp=P201564

http://iosrjournals.org/iosr-jm/pages/v13(3)Version-1.html
http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/539/obregonquintana.pdf?seque
http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/539/obregonquintana.pdf?seque
http://repositori.uji.es/xmlui/bitstream/handle/10234/173687/TFG_2017_BarellesMenes_Jorge.pdf?sequen
http://repositori.uji.es/xmlui/bitstream/handle/10234/173687/TFG_2017_BarellesMenes_Jorge.pdf?sequen
https://www.emis.de/journals/AMEN/2017/AMEN-170503.pdf
https://tubaf.qucosa.de/api/qucosa%3A23011/attachment/ATT-0/
https://tubaf.qucosa.de/api/qucosa%3A23011/attachment/ATT-0/
https://doi.org/10.17402/250
http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
https://doi.org/10.12988/ijma.2018.814
https://doi.org/10.1002/jgt.22124
https://doi.org/10.1002/jgt.22124
http://dx.doi.org/10.4067/S0716-09172011000200003
http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/bitstream/handle/231104/1918/AT18381.pdf?sequence=3&i
http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/bitstream/handle/231104/1918/AT18381.pdf?sequence=3&i
https://revistas.unal.edu.co/index.php/ingeinv/article/view/14795/15626
https://ocw.ehu.eus/pluginfile.php/46102/mod_resource/content/1/03_Algoritmos_Voraces/03_Algoritmos_Voraces.pdf
https://ocw.ehu.eus/pluginfile.php/46102/mod_resource/content/1/03_Algoritmos_Voraces/03_Algoritmos_Voraces.pdf
https://www.academia.edu/21855750/Greedy_Algorithms_Analysis_Design_and_Applications
https://www.academia.edu/21855750/Greedy_Algorithms_Analysis_Design_and_Applications
https://www.jmlr.org/papers/v3/chickering02b.html
https://doi.org/10.1111/1365-2656.12963
http://www.ijsrp.org/research-paper-0813.php?rp=P201564

85

Lasso-Cardona, Franco-Ocampo & Agudelo-Acevedo /
INGE CUC, vol. 16 no. 2, pp. 67–85. Julio - Diciembre, 2020

[19]	O. Debdi, “Aprendizaje Interactivo de Algoritmos Voraces: del Enfoque Individual al Colaborativo”, Tesis
Doctoral, URJC, MD, ES, 2014. Available: http://hdl.handle.net/10115/13242

[20]	U. Faigle, “The greedy algorithm for partially ordered sets”, Discrete Math, vol. 28, no. 2, pp. 153–159,
1979. https://doi.org/10.1016/0012-365X(79)90092-X

[21]	 M. Abad. Algoritmos voraces, Anàlisi i Disseny d’Algorismes. (2007-2008). Curso de informática. BCN,
ES: UPC. Available from http://www.cs.upc.edu/~mabad/ADA/curso0708/GREEDY.pdf

[22]	N. Shrikant & A. Selvakumar, “Implementation of A* Algorithm to Autonomous Robots-A. Simulation
Study”, Eng Technol Open Acc, vol. 1, no. 3, pp. 88–91, 2018. https://doi.org/10.19080/ETOAJ.2018.01.555564

[23]	P. Sudhakara & V. Ganapathy, “Trajectory Planning of a Mobile Robot using Enhanced A-Star Algo-
rithm”, Indian J Sci Technol, vol. 9, no. 41, pp. 1–10, 2016. https://doi.org/10.17485/ijst/2016/v9i41/93816

[24]	J. Peng, Y. Huang & G. Luo, “Robot Path Planning Based on Improved A* Algorithm”, Cybern Inf Tech-
nol, vol. 15, no. 2, pp. 171–180, 2015. https://doi.org/10.1515/cait-2015-0036

[25]	R. Rodríguez-Puente & M. Lazo-Cortés, “Búsquedas de caminos mínimos haciendo uso de grafos redu-
cidos”, Ing Ind, vol. 38, no. 1, pp. 32–42, 2017. Available at: https://rii.cujae.edu.cu/index.php/revistaind/
article/view/497/759

[26]	F. Duchon, A. Babineca, M. Kajana, P. Beño, M. Florek, T. Fico & L. Jurišica, “Path planning with
modified A star algorithm for a mobile robot”, Procedia Manuf, vol. 96, pp. 59–69, 2014. https://doi.
org/10.1016/j.proeng.2014.12.098

[27]	X. Dai, S. Long, Z. Zhang & D. Gong, “Mobile Robot Path Planning Based on Ant Colony Algorithm With
A* Heuristic Method”, Front Neurorobot, vol. 13, pp. 1–9, 2019. https://doi.org/10.3389/fnbot.2019.00015

[28]	A. KumarGuruj, H. Agarwal & D. Parsediya, “Time-Efficient A* Algorithm for Robot Path Planning”,
Procedia Technol vol. 23, pp. 144–149, 2016. https://doi.org/10.1016/j.protcy.2016.03.010

[29]	A. Beriain, “Matemáticas en un Navegador GPS: Algoritmos de Camino más Corto y Calculo de Posi-
ción”, trabajo grado, UR, LR, Esp, 2016. Available from https://biblioteca.unirioja.es/tfe_e/TFE002201.
pdf

[30]	M. Nosrati, R. Karimi & H. Hasanvand, “Investigation of the * (Star) Search Algorithms: Characteris-
tics, Methods and Approaches”, World Appl Program, vol. 2, no. 4, pp. 251–256, 2012. Available at: https://
pdfs.semanticscholar.org/831f/f239ba77b2a8eaed473ffbfa22d61b7f5d19.pdf

[31]	 N. Gupta, K. Mangla, A. Kumar & M. Umar. “Applying Dijkstra’s Algorithm in Routing Process”, IJNTR,
vol. 2, no. 5, pp. 122–124, 2016. Available from https://www.ijntr.org/download_data/IJNTR02050040.
pdf

Luis Adrián Lasso Cardona. Systems Engineer from Universidad del Valle (Colombia). M.
Sc. in Educational Technology Management from Universidad de Santander (Colombia). As-
sistant Professor of the Faculty of Engineering and Faculty of Management Sciences of the
Universidad del Valle (Buga, Colombia). Professor of the Faculty of Engineering of the Unidad
Central del Valle del Cauca (Tulua, Colombia).. https://orcid.org/0000-0002-3354-1554

Diego Fernando Franco Ocampo. Electrical Engineer from Universidad del Valle (Colom-
bia). M. Sc. Engineering with emphasis in automation. Universidad del Valle (Colombia). Co-
ordinator of Electronics Technology and Information Systems Technology at Universidad del
Valle (Buga, Colombia).. https://orcid.org/0000-0002-4797-8263

Alexander Agudelo Acevedo. Information Systems Technologist, Universidad del Valle
(Colombia). Professor of the Faculty of Engineering Universidad del Valle (Buga, Colombia).
Professor of the Faculty of Administrative Sciences and Faculty of Engineering Universidad
del Valle (Buga, Colombia).. https://orcid.org/0000-0003-2200-349

http://hdl.handle.net/10115/13242
https://doi.org/10.1016/0012-365X(79)90092-X
http://www.cs.upc.edu/~mabad/ADA/curso0708/GREEDY.pdf
https://doi.org/10.19080/ETOAJ.2018.01.555564
https://doi.org/10.17485/ijst/2016/v9i41/93816
https://doi.org/10.1515/cait-2015-0036
https://rii.cujae.edu.cu/index.php/revistaind/article/view/497/759
https://rii.cujae.edu.cu/index.php/revistaind/article/view/497/759
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.3389/fnbot.2019.00015
https://doi.org/10.1016/j.protcy.2016.03.010
https://biblioteca.unirioja.es/tfe_e/TFE002201.pdf
https://biblioteca.unirioja.es/tfe_e/TFE002201.pdf
https://pdfs.semanticscholar.org/831f/f239ba77b2a8eaed473ffbfa22d61b7f5d19.pdf
https://pdfs.semanticscholar.org/831f/f239ba77b2a8eaed473ffbfa22d61b7f5d19.pdf
https://www.ijntr.org/download_data/IJNTR02050040.pdf
https://www.ijntr.org/download_data/IJNTR02050040.pdf
https://orcid.org/0000-0002-3354-1554
https://orcid.org/0000-0002-4797-8263
https://orcid.org/0000-0003-2200-349

