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This article relates the Seasonal Autoregressive Moving Average 
Models (SARMA) with linear regression. Based on this relation, 
the paper shows that penalized linear models may surpass the 
out-of-sample forecast accuracy of the best SARMA models in 
forecasting inflation base in past values, due to penalization and 
cross-validation. The paper constructs a minimal working exam-
ple using ridge regression to compare both competing approaches 
when forecasting monthly inflation in 35 selected countries of the 
Organization for Economic Cooperation and Development and 
in three groups of countries. The results empirically verify the 
hypothesis that penalized linear regression, and ridge regression 
in particular, can outperform the best standard SARMA models 
compute through a grid search when forecasting inflation. Thus, 
a new and effective technique for forecasting inflation based on 
past values is provided for use by financial analysts and inves-
tors. The results indicate that more attention should be given 
to machine learning techniques for forecasting inflation time 
series, even as basic as penalized linear regressions, due of their 
superior empirical performance.
Keywords: Ridge regression; penalised linear model; ARMA, 
SARMA; inflation forecasting

Resumen

Este artículo relaciona los Modelos Autorregresivos Estacionales 
de Media Móvil (SARMA) con la regresión lineal. Sobre la base 
de esta relación, el documento muestra que los modelos lineales 
penalizados pueden superar la precisión del pronóstico fuera de 
la muestra de los mejores modelos SARMA al pronosticar la in-
flación en función de valores pasados, debido a la penalización y a 
la validación cruzada. El artículo construye un ejemplo funcional 
mínimo utilizando la regresión de arista para comparar ambos 
enfoques que compiten al pronosticar la inflación mensual en 35 
países seleccionados de la Organización para la Cooperación y el 
Desarrollo Económico y en tres grupos de países. Los resultados 
verifican empíricamente la hipótesis de que la regresión lineal 
penalizada, y la regresión de arista en particular, puede superar 
a los mejores modelos estándar SARMA calculados a través de 
una búsqueda de cuadrícula cuando se pronostica la inflación. 
Así, se proporciona una técnica nueva y efectiva para pronosticar 
la inflación basada en valores pasados ​​para el uso de analistas 
financieros e inversores. Los resultados indican que se debe 
prestar más atención a las técnicas de aprendizaje automático 
para el pronóstico de series de tiempo de la inflación, incluso tan 
básicas como las regresiones lineales penalizadas, debido a su 
rendimiento empírico superior.
Palabras clave: Regresión de arista; modelo lineal penalizado; 
ARMA, SARMA; pronóstico de la inflación
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Introduction

When forecasting inflation, central banks tend not to rely exclusively on time series 
methods because their primary goal is not only short-term forecasting but also long-
term inflation control by means of monetary policy. Consequently, they frequently 
complement (or even avoid) time series methods, favouring instead structural models 
that are based on macroeconomic variables or alternatives such as indicator analysis 
(Quinn, Kenny, & Meyler, 1999). Meanwhile, financial market agents often require 
updated and frequent short-term forecasts without the need for insights into the un-
derlying causes of inflation. For these agents, time series methods are a convenient 
and expedite option, given their relative simplicity. There are more than a dozen 
inflation forecasting methods (Faust & Wright, 2013; Gómez, Sánchez & Millán, 
2019; Gil, Castellanos & González, 2019), and here provide one more, related to the 
recursive autoregression method and the direct method. An method based on the 
forecasting improvements that are achieved by standard machine learning tech-
niques applied to penalised linear regressions, which relate to the more standard 
econometric technique of (seasonal) autoregressive moving average models.

This paper argues that a simple penalised linear model can surpass the forecast-
ing performance of standard econometric models for time series, such as ARMA or 
SARMA models, when forecasting inflation based on past values. To illustrate this 
compare a minimal example of a penalised linear regression with standard (sea-
sonal) Autorregresive Moving Average Models (SARMA) for forecasting monthly 
inflation in 35 selected countries of the Organisation for Economic Co-operation and 
Development (OECD) and 3 groups of countries. In the minimal example, the out-of-
sample predictive performance of a ridge regression with one-fold cross-validation is 
compared with that of the best SARMA model obtained through a grid search. The 
results support our argument.

Penalised linear regression is shown to be mathematically related to (S)ARMA 
modeling, yet empirically more effective for forecasting inflation. The increase in 
effectiveness seems to come from the penalisation procedure and the empirical 
regularisation hyperparameter tuning through cross-validation, something which 
(S)ARMA modeling lacks. In empirical tuning, an out-of-sample experiment inside 
the original sample is created, where one part of the data is fitted and the level of 
regularisation that leads to the best performance on the other part of the data is 
chosen (Mullainathan & Spiess, 2017).

The recent popularisation of machine learning has brought with it the introduction 
of several new algorithms for predicting time series, from general models such as 
supervised learning models applied to sliding windows of the data to more specific 
models such as long short-term memory (LSTM) neural networks. The basic idea 
behind supervised machine learning in the context of prediction lies in improving its 
performance by using training data during its construction. As expressed by Mul-
lainathan and Spiess (2017) supervised machine learning seeks to predict well out 
of sample by taking a loss function L(ŷ, y) as an input, where y is an independent 
variable and ŷ its prediction, to look for a function f ̂ that has a low expected loss 
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function E(y, x) [L(f ̂ (x), y)] on new data points of the same distribution, where x is the 
vector of predictors.

One of the supervised machine learning techniques that has not received so much 
attention for the prediction of time series are the penalised linear models. In these 
models, a penalty is added to the loss function in order to decrease the complexity of 
the model and achieve greater parsimony. The purpose is to attain greater generality 
in the model in a such way that it will better capture the signal or the implicit pat-
tern in the data above the noise that the data itself contains. The “regularisation” 
that is performed by adding the penalty should achieve a better fit out of sample even 
while the fit within the sample deteriorates due to the very same penalty.

Development and analysis:
Relation between the SARMA model and penalised linear regression

SARMA models are among those preferred for modelling and forecasting stationary 
processes that are also seasonal. SARMA models can be expressed as higher order 
ARMA models (in turn, an ARMA model can be approximated by a higher order AR 
model). The AR part attempts to model the variable in question as the result of a 
linear combination of its own past values. The MA part models the error term as a 
linear combination of contemporaneous and lagging white noise terms. The ARMA 
model attempts to express the variable in question as a parsimonious combination 
of an AR part and an MA part.

Penalised regression models, on the other hand, attempt to model and predict any 
dependent variable as a linear combination of independent variables. But unlike us-
ing the least squares estimation of the standard linear regression, the estimation in 
penalised regressions adds a term in the minimisation that has the general effect 
of decreasing the values of the coefficients through a method called shrinkage or 
regularisation. The amount of ideal shrinkage is controlled in practice by cross-val-
idation, that is, by maintaining part of the sample as a validation sample in which 
the generality of prediction achieved by the method in the remaining (training) 
sample is examined and corroborated. Penalised regression models are now part of 
the basic arsenal of machine learning.

The observation that a SARMA model can be approximated by a higher order AR 
model, and therefore by a linear regression of lagged terms, raises the question of 
whether the use of penalised regression can improve the predictive capacity of an 
original SARMA model. This is question address empirically in inflation data from 
several countries and groups of countries and leaves open the debate of which method 
is superior in other samples.

SARMA models

SARMA models, introduced by Box and Jenkin (1976), are a generalisation of 
ARMA models that consider seasonality in the data generating process. Seasonal-
ity is defined as a periodic pattern in the time series. Used here the multiplicative 
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SARMA(p, q) × (P, Q)s, defined as a model for a stationary time series yt which 
obeys (1):

Where (2),

Is the lag operator and the AR, MA, seasonal AR and seasonal MA polynomials 
are defined as (3):

• A SARMA model approximated as an AR model

It should be noted that the SARMA(p, q) × (P, Q)s can always be expressed as an  
ARMA(p, q) model of the form (4):

Where (5),

and

By the Wold representation theorem, if yt – μ is covariance-stationary, yt – μ can 
be expressed as (6):

Where ηt is a deterministic time series. In the context of the ARMA(p, q) model of 
the form (7):

Indeed (8),

If yt – μ is invertible, it can also introduced (9):
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In order to write (10):

Or (11),

In this way, (yt – μ) can be expressed as an AR(∞) (12):

This expression can in turn be truncated to yield an approximation of (yt – μ) as 
an AR(m) process (13):

This proves that the SARMA(p, q) × (P, Q)s can be approximated as an AR(m) 
process which is no more than a linear regression of m lagged terms. In this sort of 
approximation, it would be convenient to have m at least as big as s to approximate 
at least a SARMA(p, q) × (1,1)s model.

Penalised linear regression

It has just been shown that (yt – μ) can be expressed as a linear regression of m 
lagged values in approximation (14):

Where a = (1 – ∑k =ͫ 1 πk. The representation of yt as a linear regression motivates 
the use of machine learning methods to predict yt, in particular the use of a penal-
ised linear regression using regularisation and cross-validation. In this paper, use 
Tikhonov regularisation based on the L2-norm.



Penalised regressions vs. autoregressive moving average models for forecasting inflation

70

• Tikhonov regularisation

Tikhonov regularisation (Hoerl & Kennard, 1970; Tikhonov & Arsenin, 1977) 
consists in adding a new penalty term to the standard quadratic loss function in 
the least squares minimisation problem. So, instead of minimising just the sum of 
squares of the residuals (15):

 
In order to find the vector π of estimated coefficients of {πk}m

k=1, the following mini-
misation is performed (16):

	
Where λ is a non-negative hyperparameter, ║•║ is the Euclidean or L2-norm de-

fined as ║π║ = √π 21 + … + π 2m, e is a vector of estimated residuals of the linear re-
gression, y is a vector of yt values in time, and X is the matrix of predictors made 
of the column vectors (1 y–1 … y–m ), where 1 is a vector of ones, and y–k  is a vector 
of lagged values yt–1.

This kind of regression is also referred to as ridge regression (Hoerl & Kennard, 
1970; Anzola, Vargas & Morales, 2019). Its purpose is to shrink the size of the coef-
ficients to avoid their being excessively large. This tends to deteriorate the in-sample 
performance for the sake of a better out-of-sample performance, improving the fit to 
the signal in the data, instead of its noise. 

Other more general regularisation schemes exist, such as elastic net (Zou & Hastie, 
2005), but focus on a minimal working example. In the elastic net, the minimisation 
involves two simultaneous penalty terms (17):

Where |•| is the L1-norm defined as |�̃|=|�1| + … + |�m|. At the same time, the 
elastic net regularisation contains as a special case the L1-regularised linear re-
gression or LASSO (Santosa & Symes, 1986; Tibshirani, 1996) when ρ = 0 which 
entails a variable selection method, since it attempts to make one or more of the �k 
equal to zero.

• Cross-validation in the ridge regression

This present paper restricts ourselves to one-fold cross-validation for the choice 
of the right λ parameter in the ridge regression1. The data to estimate the linear 
model is divided into two subsets: a training subset of data with time indices 
τ1 = {1, ...,  t1} and a validation subset of data with time indices τ2 = {t2 = t1 + 1, ..., t3 – 1}. 
1	 Its aim is to construct a minimal working example.
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The least squares minimisation problem is progressively done in the training sub-
set with time indices τ1 with a sequence of values of λ. The performance in terms 
of each value in the minimisation problem (1) is evaluated both in τ1 and in τ2. 
The potential values of λ to be explored are computed using Bayesian optimisation 
(Mockus, 1989), a kind of optimisation that attempts to minimise the number of 
evaluations while preserving the breadth of the exploration of the range of possible 
parameters. It is expected that at first, the minimum found decreases both in τ1 
and in τ2. But soon enough, the minimisation progresses only in τ1, but not out of 
sample (in τ2), where the performance deteriorates. At that step, the search for a 
better λ value is stopped. In effect, the cross-validation mechanism validates that 
the minimisation problem in τ1 is generalisable (to the validation sample τ2). This 
avoids overfitting the parameters and selection bias, since the performance of the 
vector π for predicting the estimated ŷt is evaluated in data that was not used to 
construct the model, just as in real life.

Methodology

The inflation rates of 35 OECD countries and three groups of countries (OECD, 
2019) were selected for the out-of-sample performance comparison of the SARMA 
and ridge regression predictions. These are all the inflation rates of the OECD 
sample which exhibited no seasonal integration, according to the OCSB test (Os-
born, Chui, Smith, & Birchenhall, 2009), allowing us to apply a SARMA model 
more appropriately since a SARIMA model would be more suitable in the case of 
seasonal integration. The inflation rates were all stationary according to standard 
tests such as the ADF test (Dickey & Fuller, 1979; MacKinnon, 1996). Since want 
to include an annual seasonality, at least s = 12 and include at least 12 lagged 
predictors in the ridge regression.

In order to evaluate completely out-of-sample the performance of the ridge regres-
sion, the model is used to generate one step ahead forecasts. A realistic forecaster 
does not use the forecasting model once for the sample τ2 ∪ τ2 as a whole in order to 
predict a new value for the next period, but every new period he expands τ1 with the 
next value in the time sequence and τ2 is moved one new value to the right in time. 
This method of evaluating forecasts was reproduced with an expanding window of 
one-step forecasts with re-estimation. That is, every new period, the whole model 
is re-estimated in order to produce the one-step ahead forecast. This sequence of 
one-step ahead forecasts ŷt can be indexed with a new set τ3 = {τ3, ..., T }, so that the 
true out-of-sample evaluation uses this set of indices τ3. The performance of the 
SARMA model is evaluated similarly, except that the whole sample τ1 ∪ τ2 is used 
to generate the model expanding it one period to the right in time when forming 
every forecast, since no cross-validation is performed. The initial τ1 sample starts 
in February of 2010 and ends in January 2015, while the final τ1 sample starts in 
February of 2010 and ends in October 2016. The τ2 always has a fixed length of 
25 months so the initial τ2 sample starts in February 2015 and ends in February 
2016, and the final τ2 sample starts in October 2016 and ends on November 2017. 
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Finally, the τ3 sample starts on March 2016 and ends on December 2017. One has 
to bear in mind that for the ridge regression the twelve past months are used for 
every one-step ahead forecast, so, for example, for every cross-validation performed 
in the τ2 sample 13 ridge regression forecasts are computed.

The predictive performance of both models in all countries and group of countries 
is assessed via the overall out-of-sample R2 (18) (Gu, Kelly, & Xiu, 2018):

Where i denotes the country/group of countries and y i,t+1 = t1 ∑ yi,t is the naive fore-
cast made of the average inflation so far for each period since the beginning of τ1.

Also calculated the out-of-sample R2 for each country or group of countries (19) 
(Kvalseth, 1985):

In order to compare each predictive model, used the Diebold and Mariano (2002) 
test for differences in out-of-sample predictive accuracy between two models. The 
sample of inflation rates should have strong cross-sectional correlations due to the 
global macroeconomic factors influencing the OECD countries, so one of the assump-
tions of weak dependence of the test is violated. Thus, used the version of the test 
of Gu et al. (2018) to compare two methods of forecasting where the test statistic is 
DM12 = d 12 /σ̂12 , where (20):

ê⁽¹⁾i,t+1 and ê⁽¹⁾i,t+1 are the prediction error for the inflation of country/group of coun-
tries i at time t using each method, the first (1) or the second (2), N is the number 
of countries/groups of countries, and d 12 and σ ̂12 are the mean and Newey-West 
standard errors of d12, t over the τ3 sample. According to (Gu et al., 2018), due to the 
low potential autocorrelation in the d12,t+1 time series, the asymptotic normality of 
the statistic is more likely to be guaranteed, which in turn allows for appropriate 
p-values in the comparisons.

In order to select the SARMA model, a grid search was conducted to select the 
best model. The grid search looked for the SARMA model with minimal Akaike 
information criterion with a correction for small samples (AICc) (Burnham & 
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Anderson, 2004) among all SARMA models with p ∈ {0, 1, 2, 3, 4, 5}, q ∈ {0, 1, 2, 3, 4, 5}, 
P ∈ {0, 1, 2} and Q ∈ {0, 1, 2} and p + q + P + Q ≤ 5. It is worth noting that, 
asymptotically, optimising the AIC criterion is equivalent to minimising the out-
of-sample one-step forecast mean square error MSE (Hyndman, 2013). The grid 
search is supposed to be more comprehensive than popular stepwise procedures 
such the Hyndman & Khandakar (2008) selection procedure of the R auto.arima 
function of the forecast package, for example.

Two common error measures in the sample countries were also computed. These 
measures were the Mean Absolute Error (MAE) (21) and Root Mean Square Error 
(RMSE) (22), defined as:

Where n(τ3) is the cardinality of τ3. The mean absolute percentage error (MAPE) 
was not computable because the monthly inflation rate is often zero in different 
months for several countries.

Results

The overall out-of-sample R2 was greater for the forecasts based on the ridge 
regression (19.9%) than for the forecasts based on the best SARMA models 
(10.6%). Furthermore, in 75.8% of the cases that the out-of-sample R 2oos for each 
country or group of countries was positive for the ridge regression forecasts, the 
R 2oos was better than in the forecasts by the best SARMA models (Table 1). The 
value of DM12 was 2.73. Method 1 was the best SARMA model and method 2 
was the ridge regression. This rejects the one-sided null hypothesis that the 
SARMA model has better out-of-sample predictive accuracy than the ridge re-
gression, with p = 0.00311. Although the behaviour of the Diebold-Mariano test 
is oversized in small samples, the Appendix performs a Monte Carlo analysis 
which shows that p < 0.02 can even be guaranteed in an oversized scenario. 
Table 2 and Table 3 show the mean absolute error and the root mean squared 
error per country or group of countries for both forecasting methods. The mean 
absolute error of the ridge regression forecasts was better (lower) in 57.9% of the 
countries/group of countries examined, while the root mean squared error was 
better in 63.2% of the countries/group of countries. The results clearly show the 
superiority of the ridge regression in out-of-sample forecasting terms in the il-
lustrative case chosen.
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Table 1.
R2

00s, i by country/group of countries i for the best SARMA model and ridge regression

Country SARMA Ridge
Belgium •
Canada 11% 13%•
Czech Republic •
Denmark 39%•
Finland 8%•
Hungary •
Iceland 27%•
Ireland 40%•
Italy •
Japan 22%•
South Korea 24% 24%•
Mexico 1% 20%•
Norway 5%•
Poland 12%•
Slovakia •
Sweden 27%• 9%
Switzerland 31%• 29%
Turkey 27%• 14%
United Kingdom 0% 23%•
United States 18%•
Brazil 21%• 13%
Chile •
China 0% 31%•
Colombia 61%• 42%
Costa Rica •
Estonia 11%•
India 3% 14%•
Indonesia 8% 20%•
Israel 5%•
Latvia 12% 34%•
Lithuania 13% 45%•
Russia 57%• 39%
Saudi Arabia 43%• 20%
Slovenia 26% 49%•
South Africa 7% 26%•
OECD 3%•
G-7 7%•
G-20 0%•

Note: 	 Missing numbers denote negative out-of-sample coefficients of determination. 		
		  The symbol (•) denotes the better method (the one with higher coefficient 		
		  of determination) for that particular country or group of countries.
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Table 2.
Mean absolute error of the out-of-sample forecasts in τ3 by country/group 				  
of countries i for the best SARMA model and ridge regression.

Country SARMA Ridge
Belgium 0.0020 0.0018•
Canada 0.0018• 0.0020
Czech Republic 0.0024• 0.0024
Denmark 0.0025 0.0017•
Finland 0.0019 0.0019•
Hungary 0.0023 0.0022•
Iceland 0.0025 0.0023•
Ireland 0.0034 0.0025•
Italy 0.0021• 0.0023
Japan 0.0019 0.0014•
South Korea 0.0023 0.0021•
Mexico 0.0032 0.0026•
Norway 0.0032 0.0030•
Poland 0.0021• 0.0023
Slovakia 0.0017• 0.0017
Sweden 0.0022• 0.0023
Switzerland 0.0015• 0.0016
Turkey 0.0050• 0.0061

United Kingdom 0.0017 0.0016•

United States 0.0020 0.0016•
Brazil 0.0022• 0.0024
Chile 0.0019• 0.0019
China 0.0038 0.0030•
Colombia 0.0019• 0.0025
Costa Rica 0.0032• 0.0034
Estonia 0.0032 0.0031•
India 0.0058 0.0057•
Indonesia 0.0027 0.0026•
Israel 0.0025• 0.0025
Latvia 0.0033 0.0030•
Lithuania 0.0038 0.0033•
Russia 0.0020• 0.0026
Saudi Arabia 0.0024• 0.0029
Slovenia 0.0035 0.0025•
South Africa 0.0028 0.0025•
OECD 0.0011• 0.0012
G-7 0.0013 0.0012•
G-20 0.0010 0.0009•

Note: 	 The symbol (•) denotes the better method (the one with lower mean 		
		  absolute error) for that particular country or group of countries.
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Table 3.
Root mean squared error of the out-of-sample forecasts in τ3 by country/group 			 
of countries i for the best SARMA model and ridge regression

Country SARMA Ridge
Belgium 0.0027 0.0026•
Canada 0.0026 0.0025•
Czech Republic 0.0029• 0.0029
Denmark 0.0034 0.0024•
Finland 0.0025 0.0023•
Hungary 0.0029 0.0028•
Iceland 0.0031 0.0027•
Ireland 0.0040 0.0030•
Italy 0.0024• 0.0026
Japan 0.0023 0.0019•
South Korea 0.0029 0.0029•
Mexico 0.0045 0.0040•
Norway 0.0041 0.0036•
Poland 0.0026• 0.0029
Slovakia 0.0020• 0.0021
Sweden 0.0027• 0.0030
Switzerland 0.0019• 0.0019
Turkey 0.0063• 0.0068
United Kingdom 0.0021 0.0019•
United States 0.0023 0.0020•
Brazil 0.0027• 0.0029
Chile 0.0025• 0.0026
China 0.0049 0.0041•
Colombia 0.0025• 0.0031
Costa Rica 0.0043• 0.0044
Estonia 0.0041 0.0036•
India 0.0073 0.0069•
Indonesia 0.0035 0.0033•
Israel 0.0032 0.0030•
Latvia 0.0041 0.0035•
Lithuania 0.0047 0.0038•
Russia 0.0029• 0.0034
Saudi Arabia 0.0029• 0.0034
Slovenia 0.0042 0.0035•
South Africa 0.0035 0.0031•
OECD 0.0014• 0.0014
G-7 0.0016 0.0015•
G-20 0.0012 0.0011•

Note: 	 The symbol (•) denotes the better method (the one with lower root 				  
		  mean squared error) for that particular country or group of countries.
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Conclusions

The hypothesis of this paper was that a SARMA model is mathematically related 
to a linear regression, so that using penalised linear regression for forecasting 
out-of-sample should surpass the forecast performance of the best SARMA mod-
els when forecasting inflation. The mathematical relation between both kinds of 
models was shown and a minimal working example based on ridge regression was 
built and applied to selected OECD countries and groups of countries as an em-
pirical illustration of our hypothesis. The illustrative case decisively showed the 
better forecasting performance of the ridge regression for forecasting inflation, 
introducing a new forecasting method. Our work can also be seen as a new way 
of estimating SARMA models with machine learning methods, by first express-
ing the SARMA model as an AR model, and then thinking of it as a penalised 
regression which uses an optimization penalty in the least squares minimisation 
and cross-validation to fine-tune the penalty. Our results indicate that more at-
tention should be given to machine learning techniques for time series forecasting 
of inflation, even as basic as penalised linear regressions, due to their superior 
empirical performance.
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Appendix

Here replicate the Monte Carlo analysis that was developed by Diebold and Mariano 
(2002) for Gaussian forecast errors for the sample size of the forecast series T = 22. 
The original Diebold-Mariano DM test was found to be oversized for small sample 
sizes. Nevertheless, this simulation shows that in our results the Diebold-Mariano 
test between the best SARMA model forecast and the ridge regression is significant 
with p < 0.002, even in a bad oversized scenario, if Gaussian errors are assumed.

After simplification, the original Diebold-Mariano test statistics DM for one-step 
ahead forecasts is equal to (23): 

Where dt = (e¹t)² – (e²t)² is the difference between the squares of the residuals of the 
two kind of forecasts, 1 and 2, the bar represents the sample mean of the loss differ-
ential, and Ɣ d (0) is the sample autocovariance of the loss differential at displacement 
0 (i.e. its sample variance).

For the Monte Carlo analysis, drawing realisations of {e¹t , e²t}T
t=1 following a bivari-

ate forecast-error process with different degrees of contemporaneous and serial cor-
relation in the forecast errors. First, generate {v¹t , v²t}T

t=1, with vt ~ N(0, R), where (24):

Is the desired contemporaneous correlation matrix. Second, introduce MA(1) serial 
correlation with parameter θ as (25):
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Where the scalar normalises the unconditional variance to 1. Using v1
0 = v2

0 = 0. it 
can be shown that the correlation between v1 and v2 is the same as the correlation 
between e1 and e2. Given this procedure, calculates the empirical size of the DM test 
for all combinations of ρ = 0, 0.5 and 0.9, and also θ = 0, 0.5 and 0.9 at the same level 
of the p value obtained in the Diebold-Mariano test between the best SARMA model 
forecast and the ridge regression (i.e. at the 0.311% level). This shows us the expected 
p values for the chosen sample size of T = 22 and the chosen level under different 
degrees of contemporaneous and serial correlation. Table 4 illustrates that a p value 
of at least under 0.02 is guaranteed in a bad oversized scenario for the the Diebold-
Mariano test between the best SARMA model forecast and the ridge regression.

Table 4.
Empirical size of the DM statistics for a sample size of T = 22

θ = 0 θ = 0.5 θ = 0.9

ρ = 0 0.0046 0.01008 0.01388

  ρ = 0.5 0.00454 0.00942 0.014

  ρ = 0.9 0.0042 0.00914 0.0148

Note: ρ is the contemporaneous correlation between the innovations underlying the forecast errors, 
and θ is the parameter of the MA(1) forecast error. All of the tests are at the same level as the origi-
nal Diebold-Mariano test between the best SARMA model forecast and the ridge regression (i.e. at the 
0.311% level). A total of 50,000 Monte Carlo replications are performed.
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