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Resumen— La Enfermedad de Parkinson (EP) es el segundo 
trastorno neurodegenerativo más común después de la enfer-
medad de Alzheimer. Este trastorno afecta principalmente a 
los adultos mayores con una tasa de aproximadamente el 2 %, 
y aproximadamente el 89 % de las personas diagnosticadas con 
EP también desarrollan trastornos del habla. Esto ha llevado 
a la comunidad científica a investigar información embebida en 
las señales de voz de pacientes diagnosticados con la EP, lo que 
ha permitido no solo un diagnóstico de la patología sino tam-
bién un seguimiento de su evolución. En los últimos años, una 
gran cantidad de estudios se han centrado en la detección auto-
mática de patologías relacionadas con la voz, a fin de realizar 
evaluaciones objetivas de manera no invasiva. En los casos en 
que la patología afecta principalmente los patrones vibratorios 
de las cuerdas vocales como el Parkinson, los análisis que se 
realizan típicamente sobre grabaciones de vocales sostenidas. 
En este artículo, se propone utilizar información de componen-
tes con variación lenta de las señales de voz, también conocidas 
como componentes de modulación, combinadas con un enfoque 
efectivo de reducción de dimensiónalidad que se utilizará como 
entrada al sistema de clasificación. El enfoque propuesto logra 
tasas de clasificación superiores al 88  %, superando el enfoque 
clásico basado en los Coeficientes Cepstrales de Mel (MFCC). 
Los resultados muestran que la información extraída de com-
ponentes que varían lentamente es altamente discriminatoria 
para el problema abordado y podría apoyar los sistemas de 
diagnóstico asistido para EP.
Palabras clave— Espectro de modulación; Enfermedad de 
Parkinson; señales de voz; reconocimiento de patrones; carac-
terísticas de covarianza

Abstract— Parkinson’s Disease (PD) is the second most 
common neurodegenerative disorder after Alzheimer’s dis-
ease. This disorder mainly affects older adults at a rate of 
about 2 %, and about 89 % of people diagnosed with PD also 
develop speech disorders. This has led scientific community 
to research information embedded in speech signal from 
Parkinson’s patients, which has allowed not only a diagnosis 
of the pathology but also a follow-up of its evolution. In recent 
years, a large number of studies have focused on the auto-
matic detection of pathologies related to the voice, in order 
to make objective evaluations of the voice in a non-invasive 
manner. In cases where the pathology primarily affects the 
vibratory patterns of vocal folds such as Parkinson’s, the 
analyses typically performed are sustained over vowel pro-
nunciations. In this article, it is proposed to use informa-
tion from slow and rapid variations in speech signals, also 
known as modulating components, combined with an effec-
tive dimensionality reduction approach that will be used as 
input to the classification system. The proposed approach 
achieves classification rates higher than 88  %, surpassing 
the classical approach based on Mel Cepstrals Coefficients 
(MFCC). The results show that the information extracted 
from slow varying components is highly discriminative for 
the task at hand, and could support assisted diagnosis sys-
tems for PD.
Keywords— Modulation spectrum; Parkinson’s disease; 
speech signals; pattern recognition; covariance features
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I. INTRODUCTION

PARKINSON’S Disease (PD) is a progressive neurodegenerative disorder that mainly affects motor system. 
The loss of dopamine-containing neurons in the midbrain is progressive and affects different parts of the nigral 
complex to different degrees [1]. Given the control loss of motor activities, 90 % of PD patients develop different 
speech disorders, being phonation related problems the first to manifest [2]. Parkinson’s disease also present 
signs such as slowness, tremor, stiffness, and postural instability, as for speech, recent research suggest that 
PD affects different speech production dimensions, such as breathing, phonation, articulation and prosody [3], 
[4] which reflects in signs such as reduced intensity, monotonous and rough speech, with imprecise articula-
tion, and lack of fluidity [5].

Findings from speech and voice pathologies research show that disorders affecting motor skills, such as PD, 
manifest in dysarthric speech, which is characterized by alterations not only in the excitation source (air from 
the lungs and vocal fold vibrations), but also altering the syllabic rate, the general temporal dynamics charac-
teristics of the generated speech signal, and intelligibility [6]-[8]. Advances in signal processing and machine 
learning techniques allow to implement data driven applications to assist speech pathologist not only at early 
stages but also during advanced stages of the disease, and help the decision making process [9]-[12].

As some examples, can mention researchs [13], [14] where it was explored noise, periodicity and stability mea-
sures, as well as modulation spectral based features, some results show an accuracy of 71 % for the sustained 
vowel /i/ using modulation spectral features. However, best results were reported when using stability and peri-
odicity features, for vowel /a/ with an accuracy of 91 %. More recently, it was reported that unvoiced segments 
contain highly discriminative information [15]. According to results reported on cross-language experiments, 
classification rates between 85 % to 99 % depending on the language and the speech task, could be attained. 
One important drawback of this approach is the requirement of a precise measurement of Voice Onset Time 
(VOT), which is difficult to do using an automatic algorithm.

From the linguistic and clinical point of view, speech signals analysis requires clarity in the linguistic struc-
ture of the stimuli, taking into account phonetic balance and changes in the recordings conditions according to 
the specific needs of the intended study. The Diadochokinetic tasks (DDK) are characterized by a direct syllabic 
construction, i.e., consonant (C) +vowel (V), in an alternate way during an expiratory breath. These linguistic 
structures allow to explore information during the phonation of unvoiced consonants followed by a voiced sound 
(vowel) from a linguistic and clinical point of view [16], [17]. Information from these analyses allows to study 
supraglottic articulatory phenomena, associated with the unvoiced segment, whilst the voiced segment allows 
to study phonatory phenomena, specifically glottal phenomena [18].

Exploring DDK with the alternation /pataka/ is widely known as a linguist stimuli for indirect instrumen-
tal studies aimed at the diagnosis of motor speech disorders [19]. The consonants /p/, /t/ and /k/ are part of a 
class of sounds called stops or plosives, unlike other sounds, which can be described largely in terms of steady-
state spectra, stops are transient acoustically complex phonemes, with different acoustic aspects depending 
on where the closure occurs. For example, /k/ requires the occlusion of the back of the tongue against the soft 
palate, /t/ requires closure in the vocal tract (tongue against the dental alveoli), and /p/ at the lips. With the 
chest muscles continuing to attempt to expel air, pressure builds behind the closure until it is released by 
opening the occlusion [20]. The temporal transition from the consonant to the vowel contains acoustic infor-
mation related to the articulatory precision and quality of laryngeal coordination to start the vowel produc-
tion [21], [22].

For this study, were considered recordings with DDK in sequences containing a plosive unvoiced sound followed 
by a vowel. Considering that the order in which the DDK task is articulated can provide important information 
for diagnosis purposes and it is proposed to explore the slow varying envelopes of the speech signal to extract 
such information. You have the hypothesize that information from slow varying envelopes of the speech signal 
can be associated to the relative slow transition from one point of articulation to the other, and this can give 
insights related to the coordination or skill level the speaker has to change the vocal tract configuration to utter 
a given sequence. This will be explored using previously proposed acoustic features that explore information 
from modulation components.

The remainder of this paper is organized as follows. Section 2 provides a theoretical background from an 
articulatory point of view as well as the machine learning and signal processing techniques to be used. Section 
3 describes the corpus employed for the experiments, the validation strategy and the settings for the classifica-
tion system. Section 4, presents the results and analysis of our experiments and the performance achieved by 
the proposed schemes. Lastly, Section 5 presents the final conclusions.
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II. Theoretical Background

A. Diadochokinetic tasks - (DDK)

Human speech is a natural and flexible mode of communication that not only serves to communicate 
information from a speaker to one or more listeners, it also conveys traits such as identity, age, gender, 
social and region of origin, emotional, and health states, to name a few [20], [23]. The speaker produces a 
speech signal in the form of pressure waves, air from the lungs causes the vocal folds to vibrate, exciting 
the resonances of the vocal tract in a particular configuration. This configuration modulates the excita-
tion source allowing the speaker to produce a great variety of voiced sounds [20]. Speech is produced from 
a time varying vocal tract system, which makes speech signals dynamic or time-varying in nature. Even 
though the speaker has control over many aspects of speech production, e.g., loudness, voicing, or vocal tract 
configuration, much speech variation is not under speaker control and is random, e.g., vocal fold vibration 
is not truly periodic.

From the linguistic and clinical perspective the DDK sequences /pataka/ and /pakata/ explore the place of 
articulation in the anteroposterior (from front to back) sense, i.e., /p/ labial, /t/ teeth and tongue and /k/ velar, 
keeping concordance with the contact area of articulators. The DDK /pataka/ results effective given such artic-
ulatory distribution, allowing a muscular order when uttering the sequence (Fig. 1a). On the other hand, the 
DDK /pakata/, does not keep this order in the movement of articulators, as it does a transition from lips to the 
soft palate (velum) and from there, to the anterior teeth (Fig. 1b). Thus, articulation time for such construction 
is longer as it requires more coordination to achieve articulatory precision.

From the acoustic point of view, by analyzing the burst in plosive consonants the place of articulation can be 
characterized by extracting the frequency where there is a maximum energy concentration. For Spanish, we 
have that /pa/ has a maximum energy concentration between 500 and 1000 Hz, for /ta/ between 2000 and 3500 
Hz, and for /ka/ between 1000 and 2000 Hz [25]. Having these ranges, we illustrate the spectral characteristics 
of the two DDK sequences in Fig. 2.

Fig. 1. Place of articulation order for: (a) /pataka/ lips (1) teeth and tongue (2) and velum (3). 
(b) /pakata/, lips (1) velum (2) and teeth and tongue (3). 

Source: Adapted from [24].

B. Speech characterization

Spectral or frequency analysis methods applied over “short time” duration frames, have been the preferred 
approaches to extract information from speech signals for many applications [23], [26], [20], [27] and are the 
basis for any speech enabled application. In this section describe in more detail some of the typical feature 
extraction methods that will be explored within this research.
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Fig. 2. Spectrograms comparing the two DDK sequences (a) /pataka/ and (b) /pakata/. The arrows 
indicate the maximum energy concentration for the consonants /p/, /t/ and /k/.

Source: The authors.

1) Mel Frequency Cepstral Coefficients

The most popular analysis method for automatic speech recognition combines cepstral analysis theory [28] with 
aspects related to the human auditory system [20]. The so-called mel-frequency cepstral coefficients (MFCC) are 
the classical frame based feature extraction method widely used in speech applications. One of the reasons for 
widespread usage of MFCCs is that they provide an alternative and efficient representation for speech spectra 
which incorporates some aspects of audition [20], [29].

For MFCC computation, each speech recording is pre-emphasized and windowed in overlapped frames of length 
τ using a Hamming window to smooth the discontinuities at the edges of the segmented speech frame. To allow 
x(n) represent a frame of speech that is pre-emphasized and Hamming-windowed. First, x(n) is converted to the 
frequency domain by an N point Discrete Fourier Transform (DFT) and the resulting energy spectrum can be 
written as |X(k)|2, with 1 ≤ k ≤ N. Next, P triangular band pass filters spaced according to the mel scale are 
imposed on the spectrum. These filters do not filter time domain signals, they instead apply a weighted sum 
across the frequency indexes k, which allows to group the energy of frequency bands into a single value, resulting 
in P energy values E(l) with 1 ≤ l ≤ P. Finally, a Discrete Cosine Transform (DCT) is applied to the log-filterbank 
energies.

The temporal changes in adjacent frames play a significant role in human perception. To capture this dynamic 
information in the speech, first- and second-order difference features (∆ and ∆∆ MFCC) can be appended to the 
static MFCC feature vector [20], [29].

2) AM-FM based features

Different types of low-level features have been proposed for speech processing and representation aiming to 
improve the performance of MFCC baseline systems under noisy/reverberant conditions, or to provide comple-
mentary information to MFCCs [30]. Some of these features are extracted from slowly varying subband enve-
lopes, which intend to explore as an alternative to previously proposed features for PD diagnosis. As an example, 
features derived from the AM-FM signal representation [31] have proven to be more robust in noisy conditions 
and perform at the same level as cepstral coefficients in clean conditions [32], [33]. The main difference is that 
cepstral coefficients are based on power spectrum estimation (i.e., frequency domain) whilst features derived 
from the AM-FM signal representation are computed in the time domain. More specifically, the AM-FM model 
decomposes the speech signal into bandpass channels and characterizes each channel in terms of its envelope 
and phase (instantaneous frequency) [32], [34]. The speech signal s(n) is filtered through a bank of NK filters, 
resulting in the bandpass signal yk(n) = s(n) * hk(n), where hk(n) corresponds to the impulse response of the k-th 
filter (* denotes convolution). After filtering, each analytic sub-band signal sk(n) is uniquely related to a real val-
ued bandpass signal yk(n) by the relation (1).
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(1)sk(n) = yk(n)∗ j yk(n)

Where yk(n) stands for Hilbert transform of yk(n). Here, two features are explored based on the AM-FM signal 
decomposition. The first is the so called Weighted Instantaneous Frequencies (WIF). These features are com-
puted by combining the values of a low–frequency modulator denoted as mk(n) and the instantaneous frequency, 
denoted as fk(n), per bandpass signal using a short-time approach [32] in the following way (2):

(2)Fk=
∑ fk(i)mk

2 (i)

∑ mk
2 (i)

,  k = 1, .. . Nk

Fk is calculated over the full length of the signal with increments of τ/2. The second feature set is the Mean 
Hilbert Envelope Coefficients (MHEC) [33]. In this case, the envelope mk(n) is blocked into frames and the mean 
Hilbert envelope for a specific frame in the channel k is calculated (3):

(3)Ek=
log (1

τ∑ω( i −n0+ 1)mk(i))
Ēk

,  k =1, .. . Nk

Where ω(n) is a Hamming window of length τ, and the term represents the long-term average in each chan-
nel which normalizes the values of Ek. Finally, for a specific frame and using all Ek values, a DCT is applied 
to produce the MHEC features [33].

3) Amplitude modulation features

Modulation spectrum based features have been explored in the past for different purposes, such as neu-
tral/whispered speech classification [35], or speech and speaker recognition in reverberant environments 
[36], [37], thus alleviating effects of acoustic environment in processing of speech. In the speaker recogni-
tion field, the modulation frequency (modulation domain) represents the frequency content of the subband 
amplitude envelopes and conveys information about speaking rate and other speaker specific attributes 
[38], hence this is an alternative way to the AM-FM model when exploring slowly varying subband infor-
mation. In [39] were proposed the Auditory-inspired Amplitude Modulation Features (AAMF), using time 
contexts or blocks of spectrograms consisting of multiple consecutive short-time frames. In particular, each 
recording is represented as a tensor with dimensions corresponding to acoustic frequency, modulation fre-
quency and time. Hence, each time context is represented by a Nfa × Nfm matrix (Number of acoustic bands 
× Number of modulation bands). This representation can be collapsed into a vector, followed by log10 com-
pression, then each feature vector is projected to a lower dimensional space using Principal Component 
Analysis (PCA) [39]. 

This approach, together with previously described short-time approaches, can be explored when using models 
to capture information directly from time series, such as Hidden Markov Models (HMM), however, will also 
explore to use the covariance matrix features before applying PCA as described below in order to use these 
frame based features in a standard classification system.

C. Dimensionality reduction

This stage relies on a suitable change (simplification or enrichment) of a representation, e.g. by a reduction 
of the number of features, relations or primitives describing objects, or some non-linear transformation of the 
features, to enhance the class or cluster descriptions [40]. For instance, if assume the output of the triangular 
filterbanks in the MFCC pipeline to be the features, then the DCT can be seen as a feature transformation 
process, which reduces the dimensionality and decorrelates the variables, thus resulting in a more compact and 
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informative feature vector. Techniques such as Principal Component Analysis (PCA) or Linear Discriminant 
Analysis (LDA) are commonly used for more general classification tasks [40].

Herein, explore an approach that has been proposed before for speaker recognition applied to speakers with 
dysarthria [41]. Such an approach is based on the covariance matrix. Covariance Features (CF) are a simple 
representation of data using the sample covariance matrix. This type of feature representation wasfirst used as 
a region descriptor for the problems of object detection and texture classification from images [42], and extended 
to video [43] and audio [44] processing. For a given input speech signal first extract a sequence of short-time 
features. The sample covariance matrix is then computed for such a sequence and the covariance feature vector 
is obtained by collapsing into a vector the upper (or lower) triangular part of the covariance matrix and used 
as standard features [41]. Finally, applies PCA to reduce the dimensionality of the resulting feature vector, 
retaining 98% of cumulative variance which results in feature vectors of about 40 to 50 components, depending 
on the short-time feature representation.

D. Classification - generalization and inference

Once a set of features or parameters to describe the speech recordings, another important stage is the gen-
eralization/inference stage. In this stage, a classifier/identifier is trained. The training process involves the 
parameter tuning of models to describe training samples, i.e., features extracted from speech recordings. The 
learning process requires assumption son the general form of the model or the classifier, and uses the training 
samples to estimate the unknown parameters of the model. Then an algorithm is applied in order to reduce 
the error on a set of training data or in general terms, optimize a cost function related to the task at hand [45]. 
First, will use a model to describe the dynamic information embedded in short time or frame based represen-
tations of speech signals. For this purpose, and due to the simplicity and efficiency of its parameter estimation 
algorithm, the Hidden Markov Model (HMM) was for many years the dominant approach for modeling discrete 
time series, finding widespread application in the areas of speech processing [46]. For this reason used a HMM 
based classification system as our baseline approach.

1) Hidden MarkovModels-HMM

Are a general statistical modeling technique for sequences or time series. The HMM is composed of a num-
ber of states (nϑ), each state emits symbols (observations) according to symbol-emission probabilities, and the 
states are interconnected by state-transition probabilities. Starting from some initial state, a sequence of states 
is generated by moving from state to state according to the state-transition probabilities until an end state is 
reached. Each state then emits symbols according to the state’s emission probability distribution, creating an 
observable sequence of symbols [46].

The model parameters, denoted as λ = (A, B, π), include: (i) an initial state π = [p1, ..., pnϑ]T with n elements, 
n ∈ [1, nϑ], describing the distribution over the initial state set, (ii) a transition matrix A ∈ R nϑ × nϑ with ele-
ments aij, i, j ∈ [1, nϑ] to denote the transition probability to node j, given that the HMM is currently in state i; 
and (iii) an observation matrix B = {bj (·)} that represents the observation distribution per state j in the model. It 
employs parametric distributions of a predetermined form that mostly are based on weighted sums (mixtures) 
of multivariate Gaussian densities [46].

2) Support Vector Machines – SVM

The SVM is a binary classifier which models the decision boundary between two classes as a separating 
hyperplane. In our experiments, two classes are involved: a “positive class”, i.e., individuals with PD and a 
“negative class”, i.e., individuals from the control group (HCs). By using labelled training vectors, the SVM 
optimizer finds a separating hyperplane that maximizes the separation between these two classes [47], [48]. 
The discriminant function is given by (4):

(4)f(x) =∑ j=1

N
α j c j K ( x , x j) + b

Where cj ∈ {+1,−1}, are the labels for the training vectors. The kernel function K(·,·) is constrained to have cer-
tain properties (the Mercer condition). The support vectors xj, their weights αj and the bias term b, are deter-
mined during training [47], [48].
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3) K-Nearest Neighbors – KNN

In the K-nearest neighbor classifier it is wanted to minimize the probability of misclassification. Thus, to clas-
sify a new point, are identified the K-nearest points from the training data set and then assign the new point x 
to the class having the largest number of representatives amongst this set. The particular case of K = 1 is called 
the nearest-neighbor rule, because a test point is simply assigned to the same class as the nearest point from 
the training set [40].

III. Experimental Setup

A. Speech stimuli

An evaluation corpus containing speech recordings from 100 participants sampled at 44.1 KHz with 16 reso-
lution-bits was used. This speech corpus contains recordings of 50 patients with PD and 50 healthy individuals 
(control group - HCs). These recordings were captured in noise controlled conditions, in a sound proof booth. 
The participants are balanced by gender and age (Fig. 3). The participants with a positive diagnosis for PD 
were diagnosed and labeled by neurologist experts. The labels of their neurological evaluation were assigned 
according to the UPDRS-III and Hoehn & Yahrscales [14].

Fig. 3. Histogram showing age vs count of participants in the database.
Source: The authors.

For the experiments herein, we used recordings containing successive repetitions of the utterances /pataka/ 
and /pakata/. As was mentioned before, these kind of linguistic constructions allow to explore information related 
to the articulatory precision and quality of laryngeal coordination, as well as level of motor coordination of all 
other muscles and organs that can be affected by PD [26]. Analyzing speech signals from DDK will also allow 
us to explore the relationship of information extracted from slowly varying subband envelopes to PD.

B. Feature Extraction

Prior to apply any feature extraction process, eachspeech recording was downsampled to 16 kHz. Next the 
recordings were pre-emphasized using a first order finite impulse response filter with constant a= 0.97. Features 
such as MFCC, WIFs and MHEC, were computed on a per-window basis using a 25 ms window with 15 ms 
overlap. For MFCC computation, 27 triangular bandpass filters spaced according to the mel scale were used to 
compute 13 MFCC features including the 0–th order cepstral coefficient (log-energy). Dynamic or transitional 
features are computed bymeans of an anti-symmetric Finite Impulse Response (FIR) filter with nine coefficients 
to avoid phase distortion of the temporal sequence.
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For WIFs and MHEC, a gammatone filterbank [49] with 27 channels was used. Filter center frequencies range 
from 1000 Hz to 7000 Hz and their bandwidths are characterized by the mel frequency scale. For the AAMF 
features, time contexts are 200 ms long, frame length and overlap is adjusted to guarantee a 80 hz bandwidth 
in the modulation domain. The number of filters in the acoustic domain is set to Nfa= 27 filters, with filter cen-
ter frequencies distributed according to the mel scale, and in the modulation domain to Nfm = 8 filters, using 
logarithmically-spaced triangular bandpass filters distributed between 0.01−80Hz.

C. Classification system and validation strategy

For the experiments presented here, the baseline has been adjusted using an HMM-based classifie, and the 
best adjustment will be chosen by varying the number of states and the number of Gaussians per state, this will 
be done using as input the classical MFCC feature vectors. After, setting the baseline, it is compared with the 
other feature extraction methods such as WIFs, MHEC and AAMF.

Next, by using the approach described in Section 2.3, it was possible to map the variable length frame based 
representation to a fixed dimensional feature vector. This allows the use of classic classification approaches such 
as GMM, SVM and KNN. The hyper-parameters for each classification system are tuned by using a grid search 
and selecting those parameters that present the best average accuracy.

Finally, random cross-validation (10-fold) was used with 80% of the input data recordings kept for system 
training and 30% left for validation [45]. Classification accuracy is reported as average accuracy ± the standard 
deviation across the 10 cross-validation trials. It is important to note that the folds are randomly assembled with 
the constraint of the balance of age and gender of the speakers as suggested by [15].

IV. Experimental results and discussion

A. Baseline system characterization

Table I and Table II report the accuracy results for classification using a HMM based classification system. In 
order to establish a baseline performance, the HMM was first tuned using only the MFCC feature extraction 
algorithm. This is achieved by varying the number of states and number of Gaussians per state. The first impor-
tant result to be highlight is the high variability in all accuracy values across the 10 cross-validation trials, this 
is independent of the DDK sequence, the number of states or the number of Gaussians per state. These results 
suggest that HMM might not be the best choice to model the information encoded in speech signals when trying 
to predict PD. All results, nevertheless, are better than chance (50 %), thus showing that there is discriminative 
information in the classical MFCC features for the task at hand. Also it is observed that for /pataka/ a small 
number of Guassians and independent of the number of states seems to work best, whilst for /pakata/ highest 
accuracy results were achieved with a small number of states, this however is not conclusive given the high 
variability of the results.

Table I.
Accuracy (%) results for the sequence /pataka/ with HMM varying 

the number of states and the number of Gaussians per state. 

No. of 
States 

No. of Gaussians
2 4 8 16

2 75.5±7.2 74.0±8.4 72.5±10.6 74.0±9.9
3 74.0±8.7 70.0±11.0 73.0±10.3 69.0±10.4
5 77.5±7.1 75.0±7.8 71.5±10.5 69.5±10.3

Source: Authors.

Table II.
Accuracy (%) results for the sequence /pakata/ with HMM varying 

the number of states and the number of Gaussians per state.

No. of 
States 

No. of Gaussians
2 4 8 16

2 76.0±7.3 74.5±12.1 74.0±5.5 76.0±7.0
3 70.0±8.1 75.5±6.8 71.5±6.6 72.5±4.2
5 75.5±7.9 75.5±6.8 73.5±8.1 73.5±6.6

Source: Authors.
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Next, is then compared the MFCC with other feature extraction techniques, results are reported in Table 
III. As can be seen, despite the high variability of HMM+MFCC, this strategy performs better than features 
derived from the AM-FM model, or the modulation spectrum approach. Something important to highlight, is 
the slight difference, for all feature extraction methods, in favor of the sequence /pataka/. As mentioned before, 
this sequence respects an articulatory order: from front to back.

Table III.
Accuracy(%) results for the sequences /pakata/ and /pataka/ with HMM varying the feature set. For /pataka/ 
we used five states and two Gaussians per state. For /pakata/ we used two states and two Gaussians per state. 

Features /pakata/ /pataka/
MFCC 76.0±7.3 77.5±7.1
WIF 63.5±8.1 64.5±8.3
MHEC 60.0±4.1 67.5±8.5
AAMF 66.5±8.1 73.0±7.8

Source: Authors.

B. Feature mapping using covariance matrix features

After setting the baseline using the HMM based classifier, we evaluate a different strategy. The approach is 
considered not to be in the machine learning algorithm, it should be instead at the feature extraction process 
and the preprocessing prior to feeding feature vectors to a classifier.  At this stage the approach described above 
(Section 2.3) tomap a variable length frame based representation to a fixed dimensional feature vector. Using 
this approach you can to implement classical pattern classification strategies such as SVM or KNN, and com-
pare these two strategies against the Naive Bayes Classifier (NBC). 

Results are presented in Table IV and Table V, presenting a comparison for all feature sets and three different 
classifiers. Furthermore, the results of the two DDK tasks, i.e., /pakata/ (Table IV) and /pataka/ (Table V), show 
two important results when comparing with previous section. First, the performance of the baseline feature set, 
MFCC, is not affected when using SVM combined with the feature extraction method from Section 2.3, in fact, 
we observe similar performance for WIF and MHEC, with MHEC having an improvement of around 10 % when 
using the sequence /pakata/. Finally, the AAMF feature set attains the better improvements, as it goes from 
66.5  % accuracy to 85.1 % with the sequence /pakata/, and from 73.0 % accuracy to 88.0 % with the sequence /
pataka/. These results show that the feature extraction strategy is effective, as it maintains highly discrimina-
tive information in all feature sets and helps to reduce the computational burden when compared with HMM. 
While with HMM it is required around 20 seconds (average) per feature set to train a model, training a SVM 
based classifier takes around 0.9 seconds (average).

Table IV.
Accuracy (%) results for the sequence /pakata/ comparing the feature sets by using different classification approaches.

Feature 
set

/pakata/
NBC KNN SVM

MFCC 76.1±3.0 70.0±2.5 78.0±3.2
WIF 60.2±3.0 60.0±5.1 62.2±4.0
MHEC 61.4±4.0 76.1±2.5 64.3±3.7
AAMF 69.0±5.0 80.3±3.1 85.1±2.0

Source: Authors.

Table V.
Accuracy (%) results for the sequence /pataka/ comparing the feature sets by using different classification approaches.

Feature 
set

/pataka/
NBC KNN SVM

MFCC 57.1±2.0 68.1±2.0 77.1±2.0
WIF 54.3±2.9 65.2±4.2 66.1±4.0
MHEC 55.0±3.2 75.1±2.5 78.3±3.1
AAMF 70.1±4.0 71.0±3.1 88.0±2.8

Source: Authors.
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The second important result, except for MFCC, is that all systems present a better performance when using 
the DDK sequence /pataka/ (Table V). This is important for the WIF, MHEC and AAMF feature sets, as all 
three sets in some way are looking into information encoded in slow varying envelopes. This observation allows 
to have insights related to the relevance of the phonetic structure used in the DDK sequence /pataka/, and its 
articulatory distribution anteroposterior (lips, teeth, velum). In [50], authors presented the idea that the move-
ments at the lips for /p/ and the lingual apex for /t/ are faster when comparing to the movement at the postero-
dorsal region (close to the velum) for /k/, which implies a longer transition towards a bigger contact area. Taking 
this into account, the sequence /pataka/ is a linguistic task that follows an articulatory order from a physiological 
point of view. And from an acoustic point of view, if we measure the voice onset time (VOT) for these unvoiced 
stop consonants, we confirm a increased distribution in the following order: /p/ < /t/ < /k/.

V. Discussion and Conclusions

This paper has addressed the issue of Parkinson’s Disease (PD) detection based on information extracted from 
speech signals. Two different diadochokinetic tasks where used in order to explore information during the pho-
nation of unvoiced consonants followed by a voiced sound. Two approaches were explore to implement the clas-
sification system, first a HMM based system to model the dynamic of variable length representations as is the 
case of frame based features for speech signals. Second, a feature extraction method was used to map these 
variable length frame-based representations to a fixed dimensional feature space in order to use typical clas-
sification strategies.

As PD affects motor skills, it is expected to observe some symptoms in speech production. The main hypothesis 
explored in this paper is that as coordination of articulator is affected, then long term slow varying information 
encoded in speech can signal and be linked to some disorders affecting motor skills as is the case of PD, that 
opposed to previous research in the field, where information from stability and periodicity computed in a short 
term basis has been preferred for the task at hand. In this regard, explored three feature sets that extract infor-
mation from slow varying envelopes in speech signals, i.e., WIF, MHEC and AAMF, features that have shown 
to be highly informative in other speech enabled applications. As a result, found that in general these features 
perform poorly when compared to the classical MFCC + HMM paradignm. However, in a different scenario, 
where the feature set is mapped to a static feature space, the AAMF feature set shows to be highly informative. 
There are absolute differences of around 10 % in accuracy when comparing with MFCC. These results are part 
of an ongoing research, looking at the discriminative information extracted from modulation spectral represen-
tation of speech signals. These results show that AAMF features contain discriminative information and need 
to be explored in detail for the task at hand.

Furthermore, found that selecting the DDK task actually has some influence in the final results. As was 
observed, in the sequence /pataka/ is preferred for the task at hand as its efectivenes is supported from a clini-
cal and linguistic point of view that has been previously established, given the articulatory distribution, i.e., 
an anterioposterior order for the articulators and the increment of the VOT for the stop consonants /p/, /t/ and 
/k/ as the sequence advances [51]. This motivates us to continue studying the spectral and acoustic features of 
these DDK sequences as well the unvoiced stop consonants, and vocal sounds that compose them, in order to 
find more insights related to elements that affect or have influence in the envelope of the phonetic sequence for 
the diagnosis of Parkinson’s disease.
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