Vásquez-Carbonell & Silva-Ortega / J. Comput. Electron. Sci.: Theory Appl., vol. 1 no. 1 pp. 36-70. Enero - Diciembre, 2020

Tendencias y características de la realidad virtual: Una revisión de la literatura entre los años 2017 y 2018

Trends and features of virtual reality: A literature review between 2017 and 2018

DOI: https://doi.org/10.17981/cesta.01.01.2020.04

Artículo de investigación científica. Fecha de recepción: 08/08/2020 Fecha de aceptación: 01/09/2020

Mauricio Vásquez-Carbonell

Universidad de la Costa CUC. Barranquilla (Colombia)

mvasquez1@cuc.edu.co

Jorge Silva-Ortega

Universidad de la Costa CUC. Barranquilla (Colombia)

jsilva6@cuc.edu.co

.

Para citar este artículo:

M. Vásquez-Carbonell & J. Silva-Ortega, “Tendencias y características de la realidad virtual : Una revisión de la literatura entre los años 2017 y 2018”, J. Comput. Electron. Sci.: Theory Appl., vol. 1, no. 1, pp. 36–70, 2020. https://doi.org/10.17981/cesta.01.01.2020.04

.

Resumen— La realidad virtual ha tenido una gran evolución desde la década de 1960 hasta el día de hoy. Se ha implementado en múltiples áreas, tanto de la investigación como del conocimiento, siendo más reconocida en la industria del entretenimiento. Con el propósito de establecer el estado de la realidad virtual y obtener una idea de su futuro, 537 documentos científicos han sido revisados aplicando criterios de búsqueda específicos, como realidad virtual aplicada a la educación. Un análisis bibliométrico fue realizado, teniendo como base un resumen y descripción de cada artículo, así como sus palabras claves y tendencias, procediendo a categorizar cada documento de acuerdo con su campo de aplicación. Se encontró que la realidad virtual tiene una gran relevancia en la medicina, industria militar y en el entrenamiento de personas, debido a su capacidad de simular situaciones difíciles y, sobre todo, condiciones específicas requeridas por instructores. El futuro de la realidad virtual como herramienta de entrenamiento para los profesionales de múltiples áreas es promisorio

Palabras clave— Análisis bibliométrico; educación; evolución de la realidad virtual; tendencias; realidad virtual

Abstract— Virtual Reality has greatly evolved since the 1960´s to the present. It has been implemented in multiple research and knowledge areas, the most recognized being the entertainment industry. In order to establish the state of Virtual Reality and get an idea of its prospects, 537 scientific documents have been reviewed, applying search criteria, more specifically, Virtual Reality applied to education. A bibliometric analysis was realized based on summarizing each document, as well as its keywords and trends, then proceeding to categorize each one, according to the field of application. It was found that Virtual Reality is having relevance in medicine and training area, due to the ability to simulate difficult situations and above all, specific conditions raised by instructors. The future of Virtual Reality as a tool to train professionals in multiples areas is promising.

Keywords— Bibliometric Analysis; education; trends Virtual reality; virtual Reality Evolution

I. Introducción

La Realidad Virtual o RV ha experimentado un gran avance, desde que Iván Sutherland propuso experimentar las sensaciones del mundo real a través de un mundo virtual [1]. Se ha recorrido un largo camino desde aquellos dispositivos montados en la cabeza de un usuario con base en CRT (Tubo de Rayos Catódicos) [2], hasta la complejidad y precisión de los últimos lanzamientos para que un usuario disfrute un ambiente virtual como son el Oculus Rift o HTC VIVE (Visores de realidad virtual), que actualmente han salido del ámbito del entretenimiento y han incursionado en múltiples áreas, como múltiples revisiones de literatura han constatado [22], [40].

El primer sistema computarizado usado para realizar una simulación fue la computadora Whirlwind [3], [4], un trabajo conjunto entre el MIT (Massachusetts Institute of Technology) y la Fuerza Aérea de los Estados Unidos (USAF), el cual se inició en 1945 y se prolongó hasta 1959 [5], con el fin de simular las rutas de las aeronaves.

Se puede atribuir a Morton Heilig el desarrollo de los primeros dispositivos simuladores multisensoriales, llamados Sensoramas, los cuales eran cabinas con películas pregrabadas, las cuales iban acompañadas de elementos (como aromas y vibraciones) que incrementaban la experiencia del espectador [6].

Para 1961, fue desarrollado por la corporación PHILCO (Philadelfia Storage Battery Company) un Dispositivo Montado en la Cabeza o HMD, llamado “Headsight”, el cual podía seguir los movimientos de la cabeza de un usuario, utilizando unas pantallas pequeñas para cada ojo, y conectado a un circuito cerrado de televisión [2]. Sin embargo, fue Sutherland quien propuso el concepto de un mundo virtual computarizado que pudiera simular todas las características del mundo real y además pudiera ser interactivo para el usuario: “The Ultimate Display”. El mismo Sutherland en 1968 desarrollo un dispositivo ubicado en la cabeza de un espectador, con el cual podía ver imágenes, el cual llamaría “The Sword of Damocles” y se podía acoplar a los movimientos realizados por quien lo usara, para así mantener la inmersión [2], [7].

El siguiente avance se produjo de la mano de la Universidad de Carolina del Norte (UNC), la cual empezó a desarrollar en 1967 un sistema que pudiera recibir retroalimentación, el cual se llamó “Proyect Grope”, y consista en una interfaz o pantalla que mostraba cambios al recibir una manipulación de un usuario mediante un Joystick (palanca de mando) [8].

Myron Krueger creo en 1975, un sistema que reflejaba las siluetas de los usuarios, que eran capturadas mediante cámaras, para luego ser reflejadas mediante un proyector en una pantalla como una imagen 2D. Este sistema conocido como “Videoplace” también permitía la interacción de las imágenes reflejadas por la interfaz, así como la interacción con objetos virtuales [9], [10].

En 1977, Dean Kocian, ingeniero del Laboratorio de Investigaciones Médicas Amstrong de la USAF, presento un modelo de dispositivo vestible para la cabeza de un usuario, llamado “VCASS”, cuya fabricación inició en 1982, para ayudar al entrenamiento de los pilotos, posibilitando la visualización de objetivos y optimizando sus rutas de vuelo, mediante un sistema muy similar a lo que se conoce el día de hoy como Realidad Aumentada [11]. A finales de la década de 1980, la base de la Fuerza Aérea estadounidense Wright-Patterson siguió el mismo patrón que había iniciado Kocia, y empezó a entrenar a sus pilotos usando la RV, bajo el proyecto denominado “Super Cockpit” [2]

En 1984, el Centro de Investigaciones Ames de la NASA (Administración Nacional de Aeronáutica y el Espacio), observo el potencial de la RV e imagino múltiples beneficios como el poder experimentar los planetas y sus características mediante el uso de la RV, y diseño un dispositivo montado en la cabeza o HMD, junto con una silla especial para incrementar el nivel de inmersión del usuario [12]. Además, el Centro Espacial Johnson de la NASA también empezó a entrenar a sus astronautas usando la RV a finales de la década de 1980 [2].

El avance en RV continuo, y así, en 1985, la compañía VPL Research, fundada por antiguos empleados de Atari, entre ellos Jason Lanier, a quien se le atribuye el término “Realidad Virtual”, fabrico y puso a la venta los primeros dispositivos de RV, disponibles comercialmente como el Dataglove y Eyephone HMD. Sin embargo, estos dispositivos no consiguieron las ventas suficientes, razón por lo cual la compañía se declaró en quiebra en 1990 [10]. Pronto le siguió la compañía Fake Space Labs, comercializando para 1989 un dispositivo llamado BOOM (Binocular Omni-Oriented Monitor), el cual consistía en un dispositivo parecido a unos binoculares con pantallas CRT para cada ojo, unidos a un soporte mecánico, y permitía al usuario poder manipularse de forma simple [13]. El Centro Ames de la NASA empleo dos de los dispositivos antes mencionados, específicamente el BOOM y el VPL Dataglove a fin de realizar una simulación en RV de un túnel de viento, obteniendo resultados que demostraban algunos aspectos a mejorar desde la parte técnica del hardware, pero vaticinaban el potencial que tenía las aplicaciones en RV para los científicos e ingenieros [14].

Mientras tanto la UNC, inicio el llamado “Walktrought Project” en 1986, el cual pretendía hacer que un espectador experimentara la arquitectura de ciertas edificaciones en RV. El proyecto tardó 6 años y demostró resultados prometedores, además de un análisis de las limitaciones técnicas de la fecha [15].

Por 1992, sale a la luz el Ambiente Virtual Automatizado CAVE (tiene su nombre en alegoría al escrito de Platón “La Cueva”), y consiste en un cuarto cerrado parecido a un cubo, el cual posee entre 3 y 6 proyectores, cada uno de estos ubicado detrás de una pared. Un usuario se ubica en la mitad del cuarto usando unas gafas de LCD (no confundir con HMD) para poder experimentar lo que ofrece CAVE [6], [16].

No tardó mucho en surgir un concepto derivado de la RV, y es la conocida Realidad Aumentada o RA, presentada para 1993 (aunque ya se habían dado casos de usos básicos como se mencionó antes), y consistía en una tecnología diseñada para ayudar, mediante la superposición de objetivos virtuales tridimensionales en el mundo real, a acrecentar el campo de visión de un usuario, sin reemplazarlo, como ocurre con la RV. Esto se logra a través de diferentes tipos de dispositivos como gafas y HMD´s [17], [18].

Se resaltan los aportes de la industria de videojuegos al avance y masificación de los dispositivos de RV. Por ejemplo, la compañía Sega empezó en 1991 el desarrollo de unos HMD para el negocio de consolas caseras (Sega VR Headset) y para arcades o máquinas recreativas. Se esperaba que vieran la luz en 1993, sin embargo, Sega canceló el proyecto.

La compañía que logró lanzar una consola basadada en RV, fue Nintendo en 1995, denominada el Virtual Boy. Esta consola constaba de un dispositivo parecido a un HMD, pero apoyado sobre un soporte unido a un control. La consola no duro mucho tiempo, debido a sus bajas ventas, considerada un fracaso. Sin embargo, la compañía nipona volvió a lanzarlo basándose en efectos estereoscópicos en 3D, la conocida consola portátil Nintendo 3DS, con la ventaja que no requería gafas para estos efectos y además contaba con funciones de RA.

Desde 2009, el empresario Palmer Luckey fue trabajando en el desarrollo de un dispositivo para RV que tuviera mejores capacidades técnicas y mejores precios, dando como resultado el desarrollo y posterior lanzamiento del Oculus Rift. Es correcto decir entonces que, desde este punto se inició la carrera de masificación de los dispositivos de RV, a la que también se unieron el conglomerado japonés Sony al lanzar la PlayStation VR en 2014, la compañía taiwanesa HTC con HTC VIVE en 2015 y múltiples otros dispositivos. En 2019 se lanzó el dispositivo Oculus Rift´S que presentaba ventajas técnicas sobre su predecesor y para 2020 se anunció el Oculus Quest 2, el cual seria lanzado en el año 2021.

Actualmente, la RV se encuentra en múltiples campos, no solo en el entretenimiento, siendo algunos otros campos como la medicina, la ingeniería y la educación [19], [20], así como el área militar [2]; y es de esperarse que la tendencia de la RV como herramienta didáctica o de entretenimiento no se detenga. Lo anterior se sustenta en los comprobados beneficios del uso de entornos basados en RV para la enseñanza en diferentes áreas [21]-[23]. Se destaca su aplicación y relevancia en ambientes y espacios de difícil acceso o donde los niveles de riesgo en la realidad sean elevados. De esta forma la RV permite la capacitación del recurso humano ante escenarios adversos donde el individuo requiera una preparación especial [24], destacando como relevantes los ambientes de alto riesgo y los campos de acción de la medicina [25].

Al hacer posible practicas más constantes, y más inmersivas, se puede solucionar así, uno de los problemas que aqueja a varias naciones, y es la falta de una correcta preparación de profesionales y estudiantes. Este es un problema que afecta a las naciones, y se ha relacionado el bajo nivel de entrenamiento para la vida laboral de las personas con un Bajo Índice de Innovación (GII), el cual es un indicador de la capacidad de un país para innovar [26].

Es por estos aspectos que el objetivo de este artículo es entonces, el brindar una idea sobre las áreas del conocimiento que están ofreciendo las mayores posibilidades de desarrollo para esta tecnología o cuales están aprovechando la Realidad Virtual (RV) como herramienta didáctica, así como cuales son los países que dedican más recursos a la investigación de los beneficios de la RV.

A. El concepto moderno de realidad virtual

El concepto de RV ha evolucionado desde su incepción en 1965, cuando Iván Sutherland declaro las bases de un mundo virtual, donde sistemas electrónicos pudieran simular en cierto grado la realidad [1]. Gracias a los avances tecnológicos el concepto de RV empieza a agregar conceptos más técnicos (Fig. 1). En la década de 1990, empiezan a aparecer conceptos más técnicos y como ejemplo es la definición de Fuchs y Bishops, al describir la VR con términos como “Interacción en tiempo real”, “modelos 3D” y “tecnología de pantalla” [27]. Si bien diferentes autores expresan diferentes conceptos de RV, se puede destacar 3 elementos que caracterizan la definición de esta: Inmersión o la capacidad de recrear fidedignamente un ambiente y en algunos casos, a nosotros mismos, Percepción o la capacidad de lleva a un usuario a ese ambiente, e Interacción, o la capacidad de poder manipular ese mundo simulado por parte de un usuario y obtener retroalimentación de ello, o bien, que el mundo simulado actué sobre el usuario y este obtenga retroalimentación por ello [28]–[30].

Fig. 1. Línea de tiempo Realidad Virtual
Fuente: Autores.

B. Diferencia entre realidad virtual y realidad aumentada

Si bien el avance de la RA ha ido de la mano con la RV, podemos remontarnos al año 1993 donde la RA es mostrada como una tecnología diferente a la RV, la cual consistía, no en reemplazar el mundo de un usuario, sino de incrementar el mundo real de un usuario. Este hecho se dio mediante el uso de unas gafas y HMD´s [17], [18], el cual se puede considerar la gran diferencia entre RV y RA. Es entonces que la RA trata de enriquecer el mundo alrededor de nosotros mediante la combinación del mundo real y de imágenes generadas por maquinas [31].

Un definición reciente de Klopfer & Squire sugiere que la AR puede ser considerada como una situación que entremezcla mundos reales, siendo el mundo real, sobrepuesto de forma dinámica por un mundo virtual o información virtual [32]. Estas situaciones pueden ser generadas mediante múltiples tipos de tecnologías, tales como HMD´s, ordenadores y dispositivos móviles, entre otros [33].

II. Aplicaciones de Realidad Virtual en Escenarios de Alto Riesgo (Nuclear, Salud Humana, Exploración Submarina)

La RV, junto con otras tecnologías afines, ha generado un impacto positivo a los métodos de enseñanza tradicionales [34], observando y documentando beneficios en el aprendizaje [35]. Un caso en específico es un estudio realizado en el 2002 [36], donde quedo demostrado que los estudiantes al utilizar la RV como herramienta de entrenamiento, tuvieron significativos beneficios sobre aquellos estudiantes que no la emplearon. La RV ayuda a los estudiantes el poder practicar complejos procedimientos médicos sin riesgo alguno para el paciente [25]. Otro ejemplo en la medicina es el uso de RV para el estudio y análisis en un ambiente virtual de un tipo de cáncer a un paciente, con el fin de determinar las medidas correctas para un tratamiento eficiente [37].

La RV también ha mostrado ser una herramienta eficiente para ayudar a los estudiantes a instruirse en el manejo de objetos o situaciones peligrosas. Un ejemplo de esto es la utilización de la RV para enseñar a personas el manejo de desperdicios nucleares en instalaciones nucleares [38], evitando exponer con este tipo de procedimiento a personas sin practicas previas. Así mismo, también se ha propuesto el uso de la RV para el estudio de la seguridad en las instalaciones nucleares a fin de hacer más eficientes estos procesos [39].

III. Análisis Bibliométrico

A. Método de recolección de información

Al aplicar métodos matemáticos y estadísticos a cierta recopilación de material científico y a autores, es posible encontrar ciertos patrones que nos pueden indicar la tendencia de cierta área, el avance de un campo o cuales autores son los más citados. A esto lo podemos llamar Análisis Bibliográfico, y existen múltiples técnicas y herramientas tecnológicas cuyo fin es ayudar a conseguir poder analizar la información y encontrar cualquier fenómeno que consideremos relevante [40]-[43].

El factor de impacto (o índice de impacto) demuestra la importancia que tiene una publicación en la comunidad científica. Entre mayor es el número de citaciones de una revista o artículo, mayor es el impacto que este ha obtenido en el área pertinente [43]-[45]. La idea del factor de impacto fue concebida en 1955, por Eugene Garfield [43], [44]. Para calcular el impacto de una publicación, se debe realizar después de 2 años de establecer una fecha, es decir, se calcula mediante la siguiente formula (1):

Donde:

Z: es el año que se desea medir.

A: son las veces en el que los artículos publicados por una determinada revista en el año X han sido citados.

B: son las veces en que los artículos de una determinada revista han sido citados.

C: es el número de artículos publicados por la revista en el año X.

D: es el número de artículos publicados por la revista en el año Y.

X: es el número que se obtiene al restar el año que se desea medir menos 2.

Y: es el número que se obtiene al restar el año que se desea medir menos 1.

Si se desea medir el impacto de una publicación en el año 2015, se debe tener el número de citaciones que ha tenido una revista en el 2015, de los artículos publicados en el 2013 y 2014, y dividirlo entre el número de artículos publicados por la misma revista en los años 2013 y 2014.

El índice h presenta otra manera para medir el impacto que ha tenido alguna persona en la comunidad científica mediante un cálculo, entre el número de citaciones que ha obtenido un determinado autor y el número de publicaciones que ha realizado el mismo [42]-[45]. Este sistema fue propuesto por Jorge Hirsch en el año 2005 [45] como método de medición, tanto de calidad como de cantidad de publicaciones de un autor.

Se siguieron una serie de pasos básicos para la selección de artículos científicos:

Primero se estableció cuales palabras claves cumplían los criterios necesarios. Para poder proceder a realizar un algoritmo debían contener al menos dos factores claves para ser elegidos: RV (temas sobre ambientes virtuales) y Educación (o relacionados con enseñanza).

Se analizaron los motores de búsqueda especializados a fin de determinar cuál o cuáles podrían brindar una línea de resultados acorde con lo que se desea. Y se determino que por sus contenidos se usaría el motor de búsqueda digital Web of Science (WoS).

Una vez determinadas las palabras claves y las bases de datos especializadas a emplear, se procedió a la búsqueda de la información dando preferencia a aquellos artículos que estuvieran relacionados con el tema y cumplieran con tener las palabras claves. Si bien se dio preferencia a la palabra clave Virtual Reality, se observaron y se tuvieron en cuenta aquellos artículos que tuvieran en su haber la palabra clave Virtual Enviroment, ya que estas podrían brindar información suficiente e importante.

B. Colección de datos y tratamientos

Para la recolección de datos, se realizó una búsqueda con los criterios de búsqueda correspondiente a la Fig. 2.

Esta búsqueda se llevó a cabo en noviembre de 2018 y se obtuvieron 1.688 resultados en el compendio científico en línea WoS utilizando la cadena de búsqueda en el idioma inglés. Se procedieron a elegir artículos que hubieran sido publicados en el periodo comprendido entre enero 2017 y noviembre 2018, es decir, un periodo de 23 meses. Esto arrojo como resultado 279 documentos científicos elegibles, los cuales fueron sido publicados en 2017 y 258 documentos científicos publicados en los 11 primeros meses de 2018, lo que da un total de 537 elementos utilizables.

Fig. 2. Diagrama de bloques con criterios de búsqueda (Inglés)
Fuente: Autores.

C. De las publicaciones seleccionadas

Para el análisis de la procedencia de los artículos, se decidio estudiar el origen de cada artículo, así como la nacionalidad de cada autor, y si es un artículo desarrollado por más de una nación (es decir, documentos científicos como resultado del trabajo de autores o instituciones de diferentes). Se encontró que, de las 537 publicaciones recolectadas, 510 son publicaciones en el idioma inglés (94.98 %), mientras que hay 9 publicación en español (1.68 %),7 publicación en portugués (1.30 %), 4 publicaciones en alemán (0.74 %), 2 publicaciones en húngaro (0.37 %), 2 publicaciones en ruso (0.37 %), 2 publicaciones en chino (0.37 %) y como último, 1 publicación en francés (0.19 %). Estos datos se pueden observar en la Tabla I.

Tabla I.
Idioma de las publicaciones.

Idioma

Numero de Publicaciones

Porcentaje

Inglés

510

94.98 %

Español

9

1.68 %

Portugués

7

1.30 %

Alemán

4

0.74 %

Húngaro

2

0.37 %

Ruso

2

0.37 %

Chino

2

0.37 %

Francés

1

0.19 %

Fuente: Autores.

Además, de las 537 publicaciones mencionadas, 431 corresponden a articles (80.26 %), 68 corresponden a reviews (12.67 %), 21 corresponden a proceedings papers (3.91 %), 7 a editorial reviews (1.30 %), 7 a meeting abstracts (1.30 %), 2 corresponden a early access papers (0.37 %) y finalmente 1 es un letter (0.19 %).

D. Países, regiones, autores e instituciones

Para el análisis de la procedencia de los artículos, se decido estudiar el origen de cada artículo, así como la nacionalidad de cada autor, y si es un artículo desarrollado por más de una nación (es decir, documentos científicos como resultado del trabajo de autores o instituciones de diferentes naciones).

Tabla II.
Procedencia de las publicaciones.

País

Numero de Publicaciones

Porcentaje

Estados Unidos

144

26.82 %

Reino Unido

62

11.55 %

China

50

9.31 %

Canada

46

8.57 %

Australia

40

7.45 %

Alemania

30

5.59 %

España

27

5.03 %

Francia

20

3.72 %

Italia

19

3.54 %

Brasil

18

3.34 %

Otros

81

15.08 %

Fuente: Autores.

El análisis da cuenta, sobre la mención de 62 naciones del mundo en el periodo antes mencionado. Estados Unidos se encuentra a la cabeza de la producción científica sobre RV enfocada o con usos educativo con 144 documentos (26.82 %). En segundo lugar, se encuentra Reino Unido con 62 (11.55 %) documentos, seguido de China con 50 (9.31 %), Canadá con 46 (8.57 %), Australia con 40 (7.45 %), Alemania con 30 (5.59 %), España con 27 (5.03 %), Francia con 20 (3.72 %), Italia con 19 (3.54 %) y Brasil con 18 (3.34 %). Este listado corresponde a los primeros 10 países con mayor producción en el tema ya mencionado. Estos diez países tienen en su total 456 documentos publicados, lo que representa 84.92 %, mientras que los 52 países restantes comprenden las 81 publicaciones restantes, o el 15.08 % (análisis disponible en la Tabla II). En la base de datos de los documentos elegidos para su análisis, se encontró que existen 2197 autores mencionados, lo cual es normal al haber generalmente múltiples autores por cada artículo. La lista de los primeros diez autores está encabezada por Lars Konge con 10 autorías, seguida por Karl Kowalewski con 9 autorías, Beat Muller-Stich con 9 autorías, Felix Nickel con 9 autorías, y Kamran Ahmed con 6 autorías. Estos son los autores con más de 5 autorías, y la información con los primeros diez puestos se pueden encontrar en la Tabla III.

Tabla III.
Autores con mayor número de menciones.

Autor

Numero de Menciones

Konge, L.

10

Kowalewski, K. F.

9

Muller-Stich, B. P.

9

Nickel, F.

9

Ahmed, K.

6

Friedrich, M.

5

Kenngott, H. G.

5

Schmidt, M. W.

5

Bjerrum, F.

4

Dasgupta, P.

4

Fuente: Autores.

Sobre las instituciones, se encontraron 846 instituciones publicantes. El número de instituciones que publicaron es mayor al número total de artículos (537) debido a que, en varios documentos, hubo participación de dos o más instituciones. La Universidad de Toronto se encuentra a la cabeza de instituciones con más participación en la muestra tomada, al tener participación en 13 documentos científicos. En segundo lugar, se encuentra Rigshosp con 10 participaciones, seguido de la Universidad de Washington con 10 participaciones, la Universidad de Heidelberg con 9 participaciones; y en quinto lugar la Kings Collegue con 9 participaciones. En la Tabla IV se presentan las diez primeras instituciones con mayor número de participaciones.

Se encontró en el análisis de los documentos que hubo una gran participación de empresas o instituciones, de hecho, hay registradas 437 entidades a las cuales se les atribuye participación o ayuda al momento de elaborar la documentación recopilada; entidades tanto públicas como privadas. La entidad más nombrada como fuente de auspicio fue la National Natural Science Foundation of China, instituto chino que promueve y financia investigaciones, con alrededor de 7 menciones. En segundo lugar, se encuentra la National Science Foundation, agencia gubernamental estadounidense dedicada a promover investigaciones, con 4 menciones. En tercer lugar, se encuentra la European Social Fund of the State Baden Wuerttemberg, fondo alemán dedicado a promover e integrar investigadores, posee 3 menciones. Después se encuentra la organización alemana German Research Foundation Dfg, considerada la más grande de Europa, con 3 menciones; y en quinto lugar la Nanyang Technological University, universidad malaya con 3 menciones. La Tabla V muestra las diez primeras entidades con más menciones.

Tabla IV.
Instituciones

Institución

Numero de Menciones

Universidad de Toronto

13

Rigshop

10

Universidad de Washington

10

Universidad Heidelberg

9

King´s College de Londres

9

Universidad de Copenhagen

9

Escuela Medica de Harvard

7

Universidad de Melbourne

6

Universidad de Pittsburgh

6

Universidad de Sydney

6

Fuente: Autores.
Tabla V.
Entidades con mayor número de menciones

Entidad

Numero de Menciones

National Natural Science Foundation Of China

7

National Science Foundation

4

European Social Fund Of The State Baden Wuerttemberg

3

German Research Foundation Dfg

3

Nanyang Technological University

3

Nasa

2

University Of North Carolina

3

Vattikuti Foundation

3

Agency For Healthcare Research And Quality

2

Bond University

2

Fuente: Autores.

E. Palabras claves

Se hallaron 1548 palabras claves en toda la base de datos. Estas pueden ser de palabras compuestas, como el caso de Virtual Reality, o por palabras simples, como Virtual o Reality. En este orden de ideas, la palabra más mencionada fue Virtual con 239 veces (15.4 %), seguida de Reality con 218 veces (14.08 %). Esto se encuentra alineado con los parámetros establecidos en el algoritmo de búsqueda. En tercer lugar, se encuentra la palabra Training con 111 menciones (7.17 %) y delante de la palabra Education con 108 veces (6.98 %). La palabra clave Simulation completa las primeras cinco posiciones siendo nombrada 97 veces (6.27 %). La Tabla VI muestra las primeras diez posiciones.

Tabla VI.
Palabras claves

Palabra Clave

Numero de Menciones

Porcentaje

Virtual

239

15.44 %

Reality

218

14.08 %

Training

111

7.17 %

Education

108

6.98 %

Simulation

97

6.27 %

Based

85

5.49 %

Learning

65

4.20 %

Using

46

2.97 %

Review

45

2.91 %

Surgical

43

2.78 %

Fuente: Autores.

Al analizar la muestra de 537 artículos, se encontró que estos fueron publicados en 334 revistas en total. La revista con más publicaciones acerca del tema de la educación asociado a la RV fue la revista Surgical Endoscopy And Other Interventional Techniques, revista del campo de las ciencias de la salud, con 21 artículos publicados (3.91 %). En segundo lugar, se encuentra la publicación Journal of Surgical Education, otra revista enfocada a las ciencias de la salud, con 15 publicaciones (2.79 %). En tercer lugar, se encuentra la publicación Computers & Education con 11 publicaciones hechas (2.05 %). En cuarta posición se encuentra la publicación Eurasia Journal of Mathematics Science and Technology Education con 8 publicaciones (1.49 %) y en quinta posición, la publicación Agro Food Industry Hi-Tech con 7 documentos científicos publicados (1.30 %).

Una vez realizada la base de datos con los 537 artículos, se procedió al análisis básico de cada uno de estos, en lo que se incluye el resumen y las palabras claves. Esto con el fin de poder realizar una categorización de los documentos científicos descargados y así establecer mejor cuales áreas de estudio están aprovechando más esta tecnología. La Tabla VII muestra cómo se agrupan los artículos según el campo al que se enfocó. En concordancia con la Tabla VI o tabla de palabras claves, se puede observar que la mayoría de estos artículos están enfocados a fin de ser utilizados como un medio de educación o entrenamiento, así como también un medio para la rehabilitación de las personas.

Es necesario recalcar, que los artículos pueden no solo estar en una categoría, sino que pueden pertenecer a 2 o más. En el análisis correspondiente se encontró que la mayoría de los artículos estaban localizados en 2 o más categorías según su área de estudio o enfoque.

IV. Analisis De Articulos Según Su Categotizacion

Habiendo leído las palabras claves y el resumen de cada artículo recolectado, se procedió a realizar una categorización, a agruparlos según el campo de uso y el objetivo por el cual el artículo fue realizado. Con esta información se conformó la Tabla VII. Se puede observar entonces, la gran apuesta que están haciendo los diferentes campos asociados a la salud, utilizando la RV, ya sea como sustituto de los medios tradicionales de enseñanza, o como complemento de estos mismos. Y esto es bastante comprensible, debido a que los profesionales de las diferentes áreas de la salud deben enfrentar muchos problemas para poder realizar sus prácticas aplicadas a los humanos, teniendo como principal riesgo, el daño que pueden sufrir los pacientes.

La cirugía es el campo que más le está apostando a entrenar utilizando la RV como sustituto de los medios tradicionales. Inclusive, los artículos dedicados principalmente al estudio de casos sobre RV en el entrenamiento en el campo de la cirugía, es el que presente en la mayor numero de casos de estudio. Se puede observar que un procedimiento médico, llamado Laparoscopia, ha despertado el interés de muchos investigadores a fin de estudiar los beneficios del entrenamiento en un mundo virtual y así hacer mejores y más preparados profesionales. La laparoscopia que es una exploración de una parte del cuerpo a través de un instrumento óptico llamado laparoscopio ha tenido un gran aliado en la RV. Al poder simular este procedimiento en un ambiente virtual, y poder combinarlo con otros métodos didácticos, se han podido entrenar las habilidades de los futuros profesionales, asimismo, la endoscopia, que es otro tipo de exploración corporal mediante un dispositivo denominado endoscopio, también se ha beneficiado de la tecnología antes mencionada.

Tabla VII.
Categorización de los artículos según su campo

Categorías

Subcategorias

Referencias

Salud y actividad

Calidad de vida

430, 498, 521, 551

Ejercitación

47, 61, 62, 82, 260, 271, 290, 338, 343, 541

Educación/Entrenamiento/Rehabilitación/Tratamiento

Adrenalectomía

136

Anatomía

85, 107, 123, 142, 160, 179, 180, 190, 268, 291, 292, 318, 331, 383, 390, 555, 573

Apendicectomía

324

Arquitectura/Urbanismo

196, 211, 563, 564, 576

Arte marcial

104

Artrología

174, 212, 289, 376, 381, 468

Astronomía

455, 543

Autoestereoscopia

573

Autismo

69, 209, 353, 506

Aviación

48

BED

314

Biotecnología/Biología molecular/Biología

198, 325, 559, 560, 572

Broncoscopia

96, 415, 484, 490, 514

Cateterismo

300, 389, 414, 533

Cirugía

76, 110, 113, 146, 148, 155, 161, 162, 166, 169, 170, 173, 176, 181, 182, 190, 192, 197, 203, 205, 207, 218, 224, 235, 244, 252, 259, 265, 273, 277, 286, 293, 300, 317, 326, 328, 334, 337, 360, 365, 369, 371, 397, 399, 405, 409, 410, 411, 420, 424, 427, 428, 432, 434, 441, 452, 460, 461, 462, 463, 466, 473, 491, 496, 500, 511, 512, 513, 524, 528, 532, 561, 562, 569, 571, 575, 578

Educación/Entrenamiento/Rehabilitación/Tratamiento

Cirugía bariátrica

151

Cirugía maxilofacial

571

Cirugía ortognática

524

Colecistectomía

135, 299, 535

Construcción

329, 348, 356, 387, 472, 497

Cuidados aplicados a la salud/Medicina

108, 122, 127, 129, 158, 245, 300, 344, 359, 370, 380, 384, 385, 394, 395, 406, 418, 431, 435, 459, 481, 493, 505, 518, 538, 550, 551

Cultura/Arte

66, 219, 270, 279, 280, 281, 282, 368, 469, 519, 534, 549, 570, 580

Déficit de atención/Hiperactividad

440

Desórdenes en el desarrollo de la coordinación (DCD)

302

Diseño gráfico

72

Dislexia

60

Educación ambiental

249, 297, 581

Educación física/Deportes y afines

102, 269, 352, 354

Educación/Educación remota

56, 92, 139, 152, 153, 164, 171, 200, 208, 233, 238, 243, 247, 251, 254, 267, 272, 333, 336, 341, 342, 347, 357, 361, 362, 367, 373, 406, 408, 416, 437, 444, 446, 449, 489, 494, 498, 501, 504, 507, 510, 517, 534, 542, 550, 565, 566

Endodoncia

371

Endoscopia

96, 124, 132, 133, 148, 154, 174, 289, 303, 324, 335, 376, 381, 405, 415, 426, 468, 476, 486, 547, 552

Energía alternativa

471

Enfermedad de Parkinson

503

Enfermería

120, 151, 263, 264, 308, 344, 355, 388, 414, 425

Espectroscopia

520

Estrés postraumático

451

EVAR

218

Física

358, 479, 520

Fluoroscopia

328, 386

Genética/Genómica

46

Geografía/Geología

143, 185

Hemofilia

459

Historia

68, 270, 364

Idiomas

103, 105, 315, 436

IKACTA

289

Industria automotriz

49

Industria manufacturera

242, 319

Industria minera

99

Industria textil

74, 448

Ingeniería

121, 134, 188, 213, 217, 304, 340, 350, 351, 400, 417, 456, 472, 486

Inyectología

91

Juegos educativos

122, 149, 170, 172, 202, 226, 227, 232, 245, 250, 253, 255, 319, 364, 368, 435, 518, 521, 541, 544, 579, 580

Laparoscopia

77, 87, 88, 135, 136, 152, 161, 165, 170, 171, 193, 194, 195, 206, 220, 222, 224, 230, 241, 262, 275, 285, 294, 299, 301, 320, 324, 375, 396, 410, 419, 422, 423, 463, 467, 475, 492, 535, 556

Mamoplastia

502

Matemáticas

101, 115, 201

Nanotecnología

443

Educación/Entrenamiento/Rehabilitación/Tratamiento

Nefrología

157

Neonatología

493, 508

Neumología

207, 552

Neurología/Neurocirugía/Otoneurología/Endoneurocirugía/Neuroimagen

50, 90, 116, 117, 132, 140, 144, 205, 221, 227, 256, 259, 268, 274, 287, 288, 303, 324, 365, 366, 402, 447, 482, 554, 574

Nutrición

407

Obstetricia/Ginecología/Histeroscopía

154, 321, 337, 476, 529, 530, 531

Odontología

58, 109, 167, 168, 231, 240, 284, 295, 307, 313, 327, 371, 392, 442, 457, 465, 568

Oftalmología

112, 160, 166, 177, 283, 309, 334, 409, 499

Oncología

509, 536, 557, 561

Ortopedia

224, 397, 428, 454, 500, 528

Osteología

383, 569

Osteotomía

569

Otorrinolaringología/Otología

138, 204, 205, 225, 276, 278, 391, 439, 558

Patología

130, 131, 453, 562

Pediatría

175, 441, 493, 516

Planificación/Planeación familiar

310

Psicosis

413

Psicología

95, 236, 246, 344, 372, 482, 516

Psiquiatría

94, 413

Química

106, 183

Radiología

51, 141, 314, 346, 429, 499, 527

Radioterapia

421, 477, 478, 509, 557

Rehabilitación cardiaca/Cardiología

111, 124, 145, 147, 218, 285, 338, 547

Rehabilitación/Estimulación cerebral

64, 125, 260, 431, 485, 503, 505

Sialoendoscopia

114

Simulación de fluidos/Hidrodinámica

305

Terapia ocupacional

234

Tiroidectomía

85

Tomografía

499

Trastornos del desarrollo/Trastornos intelectuales

521, 539

Turismo

378, 570

Urología

97, 158, 214, 215, 248, 296, 379, 403, 441, 464, 515, 525

Ultrasonido

147, 189, 316, 474, 483

Uso de tecnología

54, 55, 57, 59, 71, 89, 98, 187, 188, 190, 213, 214, 217, 228, 232, 238, 256, 258, 282, 336, 347, 393, 398, 430, 434, 445, 481, 495, 501

UVA

379, 464

VATS

207

Ventriculostomía

133

VR-CPES

363

Caso de estudio/Evaluación

Cirugía

110, 117, 162, 298, 326, 360, 365, 441, 454, 462, 466, 470, 475, 491, 500, 513, 532, 561, 571, 578

Cuidados aplicados a la salud/Medicina

108, 118, 142, 150, 157, 179, 222, 307, 353, 355, 384, 385, 388, 407, 425, 433, 467, 468, 480, 503, 523, 538, 552, 557, 558

Educación

52, 99, 139, 143, 163, 186, 237, 239, 316, 322, 342, 345, 359, 401, 403, 408, 487, 494, 540, 542, 576

Filosofía

377

Odontología

82, 465, 568

Otorrinolaringología/Otología

439

Psicología

93, 181, 257, 338, 372, 516

Rehabilitación cardiaca/Cardiología

111, 547

Tecnología/Técnicas

73, 80, 84, 86, 148, 224, 229, 261, 266, 311, 312, 313, 362, 382, 420, 438, 450, 458, 464, 506, 522, 533, 541, 545, 562, 567, 575, 576

Tecnologías aplicadas a la arquitectura/Construcción/Ingeniería/Historia/Cultura

81, 211, 270, 329, 469, 472, 486, 549, 563, 564

Tecnologías aplicadas a la educacíon

53, 65, 67, 75, 78, 79, 128, 137, 145, 156, 164, 184, 216, 284, 298, 306, 332, 333, 336, 339, 345, 357, 379, 393, 398, 401, 404, 412, 454, 480, 487, 488, 492, 495, 511, 515, 524, 529, 530, 531, 546, 548, 566, 572, 573, 579, 582

Tecnologías/Metodologías

Desarrollo tecnológico/Técnicas con aplicaciones a la realidad virtual

63, 70, 100, 119, 126, 178, 185, 199, 252, 258, 261, 311, 312, 314, 349, 350, 361, 363, 369, 374, 400, 437, 438, 481, 498, 512, 516, 537, 553

Robótica

Aplicaciones a la cibernética/Cibernética

363

Aplicaciones a la robótica/Robótica

148, 191, 203, 214, 228, 282, 298, 300, 379, 399, 427, 445, 461, 464, 466, 470, 492, 515, 531, 561, 575

Fuente: Autores.

Establecido lo anterior, no se debe caer en el error que solo la medicina está estudiando los beneficios del uso de la tecnología de RV aplicada a la educación. Un ejemplo es la arquitectura, que también está utilizando los últimos beneficios de la tecnología aquí menciona, a fin de mejorar la educación de sus estudiantes y profesionales. Otro ejemplo que se encontró es como la RV se está aplicando en la educación de futuros ingenieros, y en campos que anteriormente no se hubieran pensado, como es el campo del turismo.

Sin embargo, el más claro beneficiado es el campo de la medicina. Desde el tratamiento de enfermedades como la dislexia y el autismo, hasta otros campos como radiología, se puede observar que los resultados de la búsqueda son mayoritariamente asociados al campo de la salud. Inclusive, los artículos científicos dedicados a estudios de casos son mayormente relacionados al campo médico.

Se encontró también, que la robótica, generalmente aplicada a la medicina, tiene una gran cabida en la RV como herramienta didáctica. Como se señaló anteriormente, esto es debido a las diferentes restricciones con las que se encuentran los futuros profesionales en su proceso de capacitación, y en la robótica aplicada a la medicina, aun mas, por lo caro y escaso de escenarios de practica disponible.

V. Conclusiones

Al poder simular situaciones de alto riesgo, así como escenarios con características específicas, la RV ha despertado del interés de múltiples investigadores. Los futuros profesionales enfrentan un dilema al momento de realizar prácticas para afianzar sus conocimientos, como la disponibilidad de lugares y herramientas necesarias para poder llevar a cabo sus prácticas, así como tener la situación que se plantea entrenar.

Basándose en los resultados obtenidos en este artículo, se encontró que la medicina es el campo que más le está apostando a la RV aplicada a situaciones de entrenamiento, rehabilitación y/ educación. Específicamente hablando, la cirugía y las prácticas en laparoscopia son las practicas que más se están simulando, debido a la complejidad de sus características, y, sobre todo, a capacidad de la RV de simular un ambiente quirúrgico y diferentes situaciones con pacientes.

Las conclusiones encontradas en la base de datos formada, muestra resultados promisorios para la educación en ambientes virtuales, mostrando a esta herramienta como un excelente complemento de las ayudas didácticas tradicionales, o inclusive como un futuro promisorio en donde estas ayudas puedan ser reemplazadas completamente.

Referencias

[1] I. E. Sutherland, “The Ultimate Display,” in IFIP Congress, IPTO, ARPA, OSD, vol. 2, pp. 506–508, 1965. Available: http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=BE2168BBE65B41EF39E1AD0040B1CD52?doi=10.1.1.136.3720&rep=rep1&type=pdf

[2] S. W. Greenwald, A. Kulik, A. Kunert, S. Beck, B. Frohlich, S. Cobb, S. Parsons & N. Newbutt, “Technology and Applications for Collaborative Learning in Virtual Reality,” in 12 CSCL, ISLS, PA, USA, pp. 719–726, 22 Jun. 2017. https://repository.isls.org/handle/1/210

[3] R. R. Everett & F. E. Swain, “Project Whirlwind,” Whirlwind Projec Report, MIT, MIT, Camb, Mass, USA, 1947. Available: https://dome.mit.edu/handle/1721.3/37456

[4] R. R. Everett & J. F. Jacobs, “Whirlwind I Computer,” Whirlwind Projec, MIT, Camb, Mass, USA, 1956. Available: https://dome.mit.edu/handle/1721.3/37456

[5] NMAH.AC, “Whirlwind Computer Collection,” S. I. Archives Center, MIT, Camb, Mass, USA, pp. 1–5, 2010. https://sova.si.edu//record/NMAH.AC.0290

[6] T. Mazuryk & M. Gervautz, “Virtual Reality History, Applications, Technology and Future,” ICG, TU Wien, VIE, AS, no. ISlE, pp. 1–72, 1996. Available: https://www.cg.tuwien.ac.at/research/publications/1996/mazuryk-1996-VRH/TR-186-2-96-06Paper.pdf

[7] I. E. Sutherland, “A head-mounted three dimensional display,” AFIPS ’68, Fall, part I757–764, Dec. 9-11, 1968. https://doi.org/10.1145/1476589.1476686

[8] F. P. Brooks, M. Ouh-Young, J. J. Batter & P. J. Kilpatrick, “Project GROPE Haptic displays for scientific visualization,” ACM SIGGRAPH Comput Graph, vol. 24, no. 4, pp. 177–185, 1990. https://doi.org/10.1145/97880.97899

[9] M. W. Krueger, “An architecture for artificial realities,”in Digest of Papers COMPCON Spring 1992, SF, CA, USA, pp. 462–465, Feb. 24-28 1992. https://doi.org/10.1109/CMPCON.1992.186756

[10] C. Machover & S. E. Tice, “Virtual reality,” IEEE Comput Graph Appl, vol. 14, no. 1, pp. 15–16, 1994. https://doi.org/10.1109/38.250913

[11] D. F. Kocian, “A Visually-Coupled Airborne Systems Simulator (VCASS) - An Approach To Visual Simulation,” Image Conference, AFRL, FB, OH, pp. 3–11, 1977. https://apps.dtic.mil/sti/pdfs/ADA039999.pdf

[12] M. W. McGreevy, “The virtual environment display system,” in Technology 2000, NASA, Moffett Field, CA, USA, pp. 3–9, 1987. https://ntrs.nasa.gov/citations/19910013709

[13] M. T. Bolas, “Human factors in the design of an immersive display,” IEEE Comput Graph Appl, vol. 14, no. 1, pp. 55–59, Jan. 1994. https://doi.org/10.1109/38.250920

[14] S. Bryson & C. Levit, “The virtual windtunnel: An environment for the exploration of three-dimensional unsteady flows,” RNR Technical Report RNR-92-013, NASA, Moffett Field, CA, USA, pp. 17–24, Oct. 1991. https://nas.nasa.gov/assets/pdf/techreports/1992/rnr-92-013.pdf

[15] F. P. Brooks, J. Airey, J. Alspaugh, A. Bell, R. Brown, C. Hill, U. Nimscheck, P. Rheingans, J. Rohlf, D. Smith, D. Turner, A. Varshney, Y. Wang, H. Weber & X. Yuan, “Six Generations of Building Walkthrough,” Final Technical Report, NSF, NC, U.S., 1992. http://www.cs.unc.edu/techreports/92-026/92-026.pdf

[16] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon & J. C. Hart, “The CAVE: audio visual experience automatic virtual environment,” Commun. ACM, vol. 35, no. 6, pp. 64–72, 1992. https://doi.org/10.1145/129888.129892

[17] S. Feiner, B. Macintyre & D. Seligmann, “Knowledge-based augmented reality,” Commun. ACM, vol. 36, no. 7, pp. 53–62, 1993. https://doi.org/10.1145/159544.159587

[18] C. Prendes Espinosa, “Realidad aumentada y educación: análisis de experiencias prácticas,” Píxel-Bit Rev Medios y Educ, vol. 46, no. 46, pp. 187–203, 2014. https://doi.org/10.12795/pixelbit.2015.i46.12

[19] R. A. Kockro, T. Killeen, A. Ayyad, M. Glaser, A. Stadie, R. Reisch, A. Giese & E. Schwandt, “Aneurysm Surgery with Preoperative Three-Dimensional Planning in a Virtual Reality Environment: Technique and Outcome Analysis,” World Neurosurg, vol. 96, pp. 489–499, 2016. https://doi.org/10.1016/j.wneu.2016.08.124

[20] D. Liu, Z. Sun, R. Li, J. Liu & C. Chen, “The application of Virtual Reality in the practice course of physical education,” in ICDLE 2010, IEEE, San Juan, PR, USA, pp. 78–80, Oct. 21, 2010. https://doi.org/10.1109/ICDLE.2010.5606035

[21] D. Ulrich, S. Farra, S. Smith & E. Hodgson, “The student experience using virtual reality simulation to teach decontamination,” Clin Simul Nurs, vol. 10, no. 11, pp. 546–553, 2014. https://doi.org/10.1016/j.ecns.2014.08.003

[22] E. Roy, M. M. Bakr & R. George, “The need for virtual reality simulators in dental education: A review,” Saudi Dental J, vol. 29, no. 2, pp. 41–47, 2015. https://doi.org/10.1016/j.sdentj.2017.02.001

[23] P. Häfner, V. Häfner & J. Ovtcharova, “Teaching methodology for virtual reality practical course in engineering education,” Procedia Computer Science, vol. 25, pp. 251–260, 2013. https://doi.org/10.1016/j.procs.2013.11.031

[24] M. H. Da Silva, A. P. Legey & A. C. D. A. Mól, “Review study of virtual reality techniques used at nuclear issues with emphasis on Brazilian research,” Ann Nucl Energy, vol. 87, Part. 2, pp. 192–197, 2016. https://doi.org/10.1016/j.anucene.2015.08.017

[25] T. Miki, T. Iwai, K. Kotani, J. Dang, H. Sawada & M. Miyake, “Development of a virtual reality training system for endoscope-assisted submandibular gland removal,” J Cranio-Maxillofacial Surg, vol. 44, no. 11, pp. 1800–1805, 2016. https://doi.org/10.1016/j.jcms.2016.08.018

[26] G. I. Zhirnova & S. G. Absalyamova, “Global innovation gap and quality of education,” in ICL 2013, IEEE, Kazan, Russia, pp. 144–145, Sept. 25-27, 2013. https://doi.org/10.1109/ICL.2013.6644558

[27] M. Brown, C. Burbeck, U.-Ch. Hill, N. Durlach, J. Lackner, M. Mcneill, A. Srinivasan, I. Sutherl, S. Microsystems & D. Urban, “Research Directions in Virtual Environments,” Report NSF Invit Work, UNC, Chapel Hill, NC, USA, 1992. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.6607&rep=rep1&type=pdf

[28] M. Slater, “Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments,” Philos Trans R Soc B Biol Sci, vol. 364, no. 1535, pp. 3549–3557, 2009. https://doi.org/10.1098/rstb.2009.0138

[29] C. Heeter, “Interactivity in the Context of Designed Experiences,” J Interact Advert, vol. 1, no. 1, pp. 3–14, 2000. https://doi.org/10.1080/15252019.2000.10722040

[30] P. Cipresso, I. A. C. Giglioli, M. A. Raya & G. Riva, “The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature,” Front Psychol, vol. 9, pp. 1–20, 2018. https://doi.org/10.3389/fpsyg.2018.02086

[31] S. C. Bronack, “The role of immersive media in online education,” J Contin High Educ, vol. 59, no. 2, pp. 113–117, 2011. https://doi.org/10.1080/07377363.2011.583186

[32] E. Klopfer & K. Squire, “Environmental detectives-the development of an augmented reality platform for environmental simulations,” Educ Technol Res Dev, vol. 56, no. 2, pp. 203–228, 2008. https://doi.org/10.1007/s11423-007-9037-6

[33] H. K. Wu, S. W. Y. Lee, H. Y. Chang, & J. C. Liang, “Current status, opportunities and challenges of augmented reality in education,”Comput Educ, vol. 62, pp. 41–49, 2013. https://doi.org/10.1016/j.compedu.2012.10.024

[34] Z. Comas-González, I. Echeverry-Ocampo, R. Zamora-Musa, J. Vélez, R. Sarmiento & M. Orellanana, “Tendencias recientes de la Educación Virtual y su fuerte conexión con los Entornos Inmersivos,” Rev Espac, vol. 38, no. 15, pp. 4–14, 2017. http://www.revistaespacios.com/a17v38n15/17381504.html

[35] Z. Merchant, E. T. Goetz, L. Cifuentes, W. Keeney-Kennicutt & T. J. Davis, “Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis,” Comput Educ, vol. 70, no. 1, pp. 29–40, 2014. https://doi.org/10.1016/j.compedu.2013.07.033

[36] N. E. Seymour, A. G. Gallagher, S. A. Roman, M. K. O’Brien, V. K. Bansal, D. K. Andersen & R. M. Satava, “Virtual reality training improves operating room performance: results of a randomized, double-blinded study,” Ann. Surg., vol. 236, no. 4, pp. 454–458, 2002. https://doi.org/10.1097/00000658-200210000-00008

[37] S. H. Yoon, J M. Goo, Ch-H. Lee, J. Y. Cho, D.-W. Kim, H. J. Kim, J. Ch. Paeng & Y. T. Kim, “Virtual reality-assisted localization and three-dimensional printing-enhanced multidisciplinary decision to treat radiologically occult super fi cial endobronchial lung cancer,” Thorac Cancer, vol. 9, no. 11, pp.1525–1527, 2018. https://doi.org/10.1111/1759-7714.12879

[38] M. H. Da Silva, A. P. Legey & A. C. D. A. M??l, “Review study of virtual reality techniques used at nuclear issues with emphasis on Brazilian research,” Nucl, vol. 87, Part. 2, pp. 192–197, 2016. https://doi.org/10.1016/j.anucene.2015.08.017

[39] M. da Silva, A. Do Espito Santo, R. Marins, A. P. Legey, D. Machado & A. Abreu, “Using virtual reality to support the physical security of nuclear facilities,” Prog Nucl Energy, vol. 78, pp. 19–24, 2015. https://doi.org/10.1016/j.pnucene.2014.07.004

[40] D. Jacobs, “Demystification of Bibliometrics, Scientometrics, Informetrics and Webometrics,” in 11th DIS Annual Conference, UniZulu, RCB, SA, pp. 1–19, 2-3 sept. 2010. Available: http://www.lis.uzulu.ac.za/research/conferences/2010/DIS%20conference%202010%20DJacobs.pdf/span>

[41] D. Chen, Z. Liu, Z. Luo, M. Webber & J. Chen, “Bibliometric and visualized analysis of emergy research,” Ecol Eng, vol. 90, pp. 285–293, 2016. https://doi.org/10.1016/j.ecoleng.2016.01.026

[42] Q. Hou, G. Mao, L. Zhao, H. Du & J. Zuo, “Mapping the scientific research on life cycle assessment: a bibliometric analysis,” Int J Life Cycle Assess, vol. 20, no. 4, pp. 541–555, 2015. https://doi.org/10.1007/s11367-015-0846-2

[43] M. Amin & M. A. Mabe, “Impact factors: use and abuse,” Med (B Aires), vol. 63, no. 4, pp. 347–354, 2003. https://rauterberg.employee.id.tue.nl/publications/amin-mabe-2000.pdf

[44] E. Garfield, “The history and meaning of the journal impact factor,” JAMA, vol. 295, no. 1, pp. 90–93, 2006. https://doi.org/ 10.1001/jama.295.1.90

[45] J. E. Hirsch, “An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship,” Scientometrics, vol. 85, no. 3, pp. 741–754, 2010. https://doi.org/10.1007/s11192-010-0193-9

[46] S. Persky, W. D. Kistler, W.M.P. Klein & R. A. Ferrer, “Internet Versus Virtual Reality Settings for Genomics Information Provision,” Cyberpsychol Behav Soc Netw, vol. 22, no. 1, pp. 7–14, 2019. https://doi.org/10.1089/cyber.2017.0453

[47] J. Madrigal-Pana, J. Gómez & J. Moncada-Jiménez, “Adult Perception Toward Videogames and Physical Activity Using Pokémon Go,” Games Health J, vol. 8, no. 3, pp. 227–235, 2018. https://doi.org/10.1089/g4h.2018.0100

[48] J. Spaliaras, A, Streiff, G. Mann & T. Straker, “Teaching and training in airway management: Time to evaluate the current model?,” Airway, vol. 2, no. 1, pp. 28–35, 2019. https://doi.org/10.4103/ARWY.ARWY_12_19

[49] M. Dávideková, M. Mjartan & M. Gregus, “Implementing Virtual Reality into Employee Education in Production Sector of Automotive Industry: Creating Worker Training for Assembling Car Dashboard in Virtual Reality,” AD ALTA, vol. 7, no. 1, pp. 185–190, 2017. http://www.magnanimitas.cz/ADALTA/0701/papers/I_gregus.pdf

[50] S. Konakondla, R. Fong & C. Schirmer, “Simulation training in neurosurgery: advances in education and practice,” Adv Med Educ Pract, vol. 8, pp. 465–473, 2017. https://doi.org/10.2147/AMEP.S113565

[51] U. Ojha, R. Mohammed & S. Vivekanantham, “Should there be greater exposure to interventional radiology in the undergraduate curriculum?,” Adv Med Educ Pract, vol. 8, pp. 791–795, 2017. https://doi.org/10.2147/AMEP.S139298

[52] M. Műller, “Educational Standards in the School Curriculum and the Role of the Mass Media. The Case of Croatia.” Ann Univ Apulensis Ser Hist, vol. 27, pp. 159–174, 2017. Available: https://zdjp.si/wp-content/uploads/2017/05/ASHS_27-2017-1_MULLER.pdf

[53] E. Pechenkina, “Developing a typology of mobile apps in Higher Education: A national case-study,” AJET, vol. 33, no. 4–, 2017. https://doi.org/10.14742/ajet.3228

[54] Ch. Moro, Z. Štromberga & A. Stirling, “Virtualisation devices for student learning: Comparison between desktop-based (Oculus Rift) and mobile-based (Gear VR) virtual reality in medical and health science education,” AJET, vol. 33–, 2017. https://doi.org/10.14742/ajet.3840

[55] T. Cochrane, S. Cook, S. Aiello, D. Christie, D. Sinfield, M. Steagall & C. Aguayo, “A DBR framework for designing mobile virtual reality learning environments,” AJET, vol. 33, no. 6–, 2017. https://doi.org/10.14742/ajet.3613

[56] J. Birt, E. Moore & M. Cowling, “Improving paramedic distance education through mobile mixed reality simulation,” AJET, vol. 33, no. 6–, 2017. https://doi.org/10.14742/ajet.3596

[57] K. Pyoung Won, Y. Sook Shin, B. Hoon Ha & M. Anisetti, “Effects of avatar character performances in virtual reality dramas used for teachers’ education,” BIT, vol. 36, no. 7, pp. 1–14, 2017. https://doi.org/10.1080/0144929X.2016.1275809

[58] H. Yu, C. Y. Zhang, S. H. Zhang, H. Cheng & J. Chen, “Virtual Simulation Teaching Centre in Dental Education: a Report from Fujian Medical University, China,” CSA, vol. 20, pp. 173–177, 2017. https://doi.org/10.3290/j.cjdr.a38773

[59] M. C. Johnson-Glenberg & C. Megowan-Romanowicz, “Embodied science and mixed reality: How gesture and motion capture affect physics education,” Cognitive Research, vol. 2, no. 241–28, 2017. https://doi.org/10.1186/s41235-017-0060-9

[60] E. Pedroli, P. Padula, A. Guala, M. T. Meardi, G. Riva & G. Albani, “A Psychometric Tool for a Virtual Reality Rehabilitation Approach for Dyslexia,” Computat Math Method M, pp. 1–6, 2017. https://doi.org/10.1155/2017/7048676

[61] M. Al-Amri, H. Al Balushi & A. Mashabi., “Intra-rater repeatability of gait parameters in healthy adults during self-paced treadmill-based virtual reality walking,” Comput Methods Biomech Biomed Eng, vol. 20, pp. 1–9, 2017. https://doi.org/10.1080/10255842.2017.1404994

[62] M. Rincker& S. Misner, “The Jig Experiment: Development and Evaluation of a Cultural Dance Active Video Game for Promoting Youth Fitness,” Computers Schools, pp. 1–13, 2017. https://doi.org/10.1080/07380569.2017.1387468

[63] D. Neubauer, V. Paepcke-Hjeltness, P. Evans, B. Barnhart & T. Finseth, “Experiencing Technology Enabled Empathy Mapping,” Des J, vol. 20S4683–S4689, 2017. https://doi.org/10.1080/14606925.2017.1352966

[64] S. Glegg, L. Holsti, S. Stanton, S. Hanna, D. Velikonja, B. Ansley, D. Sartor & C. Brum, “Evaluating change in virtual reality adoption for brain injury rehabilitation: A knowledge translation study,” Brain Injury, vol. 12, no. 3, pp. 217–226, 2014. https://doi.org/10.3109/17483107.2015.1111944

[65] H.-H. Liou, S. J. H. Yang, S. Y. Chen & W. Tarng, “The influences of the 2D image-based augmented reality and virtual reality on student learning,” J Educ Technol Soc, vol. 20, no. 3, pp. 110–121, 2017. Available: https://www.j-ets.net/collection/published-issues/20_3

[66] P. Buonincontri & A. Marasco, “Enhancing Cultural Heritage Experiences with Smart Technologies: An integrated experiential framework,” Eur J Tour Res, vol. 17, pp. 83–101, 2017. Available: https://ejtr.vumk.eu/index.php/about/article/view/295

[67] A. Petra, “Virtual reality in education - Has education progressed thanks to VR?,” Inf Tarsadalom, vol. 17, pp. 7–24, 2017. https://doi.org/10.22503/mftars.XVII.2017.4.1

[68] K. Ijaz, A. Bogdanovych & T. Trescak, “Virtual worlds vs books and videos in history education,” Interact Learn Envir, vol. 25, pp. 1–26, 2016. https://doi.org/10494820.2016.1225099

[69] Y. Cai, R. Chiew, Z. Nay, Ch. Indhumathi & L. Huang, “Design and development of VR learning environments for children with ASD,” Interact Learn Envir, vol. 25, pp. 1–12, 2017. https://doi.org/10.1080/10494820.2017.1282877

[70] Y. Yu, J. Yang, X. Zan, J. Huang & X. Zhang, “Research of Simulation in Character Animation Based on Physics Engine,” Inter J Digit Multimedia Broadcast, Special Issue, pp. 1–7, 2017. https://doi.org/10.1155/2017/4815932

[71] H. Sun, “Design of Education Application based on Shiva 3D Platform,” iJET, vol. 12. 200.–, 2017. https://doi.org/10.3991/ijet.v12i04.6685

[72] M. Lou, “A Virtual Reality Teaching System for Graphic Design Course,” iJET, vol. 12. 117.–, 2017. https://doi.org/10.3991/ijet.v12i09.7492

[73] B. Wang, “Evaluation of Sports Visualization Based on Wearable Devices,” iJET, vol. 12. 119.–, 2017. https://doi.org/10.3991/ijet.v12i12.7962

[74] K. Wong Lau, C. Kan & P. Y. Lee, “Doing textiles experiments in game-based virtual reality: A design of the Stereoscopic Chemical Laboratory (SCL) for textiles education,” IJILT, vol. 34–, 2017. https://doi.org/10.1108/IJILT-05-2016-0016

[75] J. Pirker, I. Lesjak & Ch. Guetl, “An Educational Physics Laboratory in Mobile Versus Room Scale Virtual Reality – A Comparative Study,” iJOE, vol. 13. 106.–, 2017. https://doi.org/10.3991/ijoe.v13i08.7371

[76] M. W. Schmidt, M. Friedrich, K. F. Kowalewski, J. De La Garza, T. Bruckner, B.P. Müller-Stich & F. Nickel, “Learning from the surgeon’s real perspective – First-person view versus laparoscopic view in e-learning for training of surgical skills? Study protocol for a randomized controlled trial,” Int J Surg Protoc, vol. 3, pp. 7–13, 2017. https://doi.org/10.1016/j.isjp.2017.01.001

[77] M. Friedrich, K.-F. Kowalewski, T. Proctor, C. Garrow, A. Amin Preukschas, H. Götz Kenngott, L. Fischer, B.-P. Müller-Stich & F. Nickel,, “Study protocol for a randomized controlled trial on a multimodal training curriculum for laparoscopic cholecystectomy – LapTrain,” Int J Surg Protoc, vol. 5, pp. 11–14, 2017. https://doi.org/10.1016/j.isjp.2017.07.002

[78] M. Gawlik-Kobylińska, “Task-based approach in 3d education for security and safety,” IJIT Security, Special Issue, pp. 3–12, 2017. https://doi.org/

[79] S. Hwan (Mark) Lee, K. Sergueeva, M. Catangui & M. Kandaurova, “Assessing Google Cardboard virtual reality as a content delivery system in business classrooms,” J Educ Bus, vol. 92, pp. 1–8, 2016. https://doi.org/10.1080/08832323.2017.1308308

[80] E. Fokides, “Pre-Service Teachers’ Intention to Use MUVEs as Practitioners – A Structural Equation Modeling Approach,” JITE, vol. 16, pp. 47–68, 2016. https://doi.org/10.28945/3645

[81] R. Eiris & M. Gheisari, “Research trends of virtual human applications in architecture, engineering and construction,” IT Con, vol. 22, no. 22, pp. 168–184, 2017. https://doi.org/

[82] Y.-S. Wang, J. Sun & L. Liu, “Effects of applying virtual reality to adventure athletic education on students’ self-efficacy and team cohesiveness,” J Interdiscip Math, vol. 20, pp. 895–908, 2017. https://doi.org/10.1080/09720502.2017.1358889

[83] Y. Guven, “Scientific basis of dentistry,” J Istanbul Univ Fac Dent, vol. 51, no. 3, pp. 64–71, 2017. https://doi.org/10.17096/jiufd.04646

[84] U. Gulec, M. Yilmaz & V. Isler, “A Literature Survey: Is it Necessary to Develop a New Software Development Methodology for Virtual Reality Projects?,” J UCS, vol. 23, no. 8, pp. 725–754, 2017. https://doi.org/10.3217/jucs-023-08-0725

[85] S. P. Tarpada, W. D. Hsueh, S. B. Newman & M. J. Gibber, “Formation and assessment of a novel surgical video atlas for thyroidectomy,” J Vis Commun Med, vol. 40, no. 1, pp. 21–25, 2017. https://doi.org/10.1080/17453054.2017.1289062

[86] M. Elessawy, A, Wewer, V. Guenther, T. Heilmann, Ch. Eckmann-Scholz, Ch. Schem, N. Maass, G. Noé, L. Mettler & I. Alkatout, “Validation of psychomotor tasks by Simbionix LAP Mentor simulator and identifying the target group,” Minim Invasive Ther Allied Technol, vol. 26, no. 5, pp. 262–268, 2017. https://doi.org/10.1080/13645706.2017.1303516

[87] K. Hagelsteen, A. Langegård, A. Lantz, M. Ekelund, M. Anderberg & A. Bergenfelz, “Faster acquisition of laparoscopic skills in virtual reality with haptic feedback and 3D vision,” MITAT, vol. 26, no. 5, pp. 269–277, 2017. https://doi.org/10.1080/13645706.2017.1305970

[88] T. Takeoka, S. Takiguchi, M. Uemura, Y. Miyazaki, T. Takahashi, Y. Kurokawa, T. Makino, Y. Yamasaki, M. Mori & D. Yuichiro, “Assessment potential of a new suture simulator in laparoscopic surgical skills training,” Minim Invasive Ther Allied Technol, vol. 26, pp. 1–8, 2017. https://doi.org/10.1080/13645706.2017.1312456

[89] C. Våpenstad, E. Hofstad, L. Bø, E. Kuhry, G. Johnsen, R. Mårvik, T. Langø & T. Hernes, “Lack of transfer of skills after virtual reality simulator training with haptic feedback,” Minim Invasive Ther Allied Technol, vol. 26, no. 6, pp. 346–354, 2017. https://doi.org/10.1080/13645706.2017.1319866

[90] N. Dahdah, Marie & Bennett, Monica & Prajapati, Purvi & Parsons, Thomas & Sullivan, Erin & Driver, Simon., “Application of virtual environments in a multi-disciplinary day neurorehabilitation program to improve executive functioning using the Stroop task,” NeuroRehabilitation, vol. 41, pp. 721–734, 2017. https://doi.org/10.3233/NRE-172183

[91] L. A. McWilliams & A. Malecha, “Comparing Intravenous Insertion Instructional Methods with Haptic Simulators,” Nurs Res Pract, vol. 2017, pp. 1–11, 2017. https://doi.org/10.1155/2017/4685157

[92] J. Bidarra & E. Rusman, “Towards a pedagogical model for science education: bridging educational contexts through a blended learning approach,” Open Learning, vol. 32, no. 1, pp. 1–15, 2016. https://doi.org/10.1080/02680513.2016.1265442

[93] I. V. Dubrovina & D. Lubovsky, “Developing Psychological Culture of Schoolchildren as a Means of Supporting Implementation of Basic Education Standards,” Psychol Sci Educ, vol. 22, pp. 25–33, 2017. https://doi.org/10.17759/pse.2017220602

[94] K. Krysta, M. Krzystanek, W. J. Cubała, M. S. Wiglusz, K. Jakuszkowiak-Wojten, M. Gałuszko-Węgielnik, M. Czarnowska-Cubała, J. Szarmach, A. Włodarczyk & M. Janas-Kozik, “Telepsychiatry and Virtual Reality an the Teatment of Patients with Intellectual and Developmental Disabilities,” Psychiatr Danub, vol. 29, Suppl 3, pp. 656–659, 2017. https://doi.org/

[95] G. Castelnuovo, G. Pietrabissa, G.M. Manzoni, R. Cattivelli, A. Rossi, M. Novelli, G. Varallo & E. Molinari, “Cognitive behavioral therapy to aid weight loss in obese patients: current perspectives,” Psychol Res Behav Manag, vol. 6, no. 10, pp. 165–173, 2017. https://doi.org/10.2147/PRBM.S113278

[96] T. Naur, P. Nilsson, P. Pietersen, P. Frost & L. Konge, “Simulation-Based Training in Flexible Bronchoscopy and Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration (EBUS-TBNA): A Systematic Review,” Respiration, vol. 93, no. 5, pp. 355–362, 2017. https://doi.org/10.1159/000464331

[97] L. Nayahangan, R. Hansen, K. Lindorff-Larsen, Ch. Paltved, B. Nielsen & L. Konge, “Identifying content for simulation-based curricula in urology: a national needs assessment,” Scand J Urology, vol. 51, pp. 1–7, 2017. https://doi.org/10.1080/21681805.2017.1352618

[98] H. Kim, F. Ke & I. C. Paek, “Game-Based Learning in an OpenSim-Supported Virtual Environment on Perceived Motivational Quality of Learning,” TPE, vol. 26, no. 5, pp. 617–631, 2017. https://doi.org/10.1080/1475939X.2017.1308267

[99] C. Batista, V. Seshadri, R. A. Rabelo, P. Reinhardt, P. Moreira Procópio Calazans & J. Filho, “Applying virtual reality model to green ironmaking industry and education: ‘a case study of charcoal mini-blast furnace plant,” Min Proc Ext Met Rev, vol. 126, no. 1-2, pp. 116–123, 2017. https://doi.org/10.1080/03719553.2016.1278516

[100] J. Durl, J. Trischler & T. Dietrich, “Co-designing with young consumers – Reflections, challenges and benefits,” Young Consumers, vol. 18, no. 4 , pp. 439–455, 2017. https://doi.org/10.1108/YC-08-2017-00725

[101] W. Huimin & H. Lanli, “Exploration and practice of mathematical modeling thought in mathematical analysis teaching,” Agro Food Industry Hi-Tech, vol. 28, no. 1, pp. 1294–1297, 2017. https://www.teknoscienze.com/tks_issue/vol_281/

[102] S. Yili, “Research on the application of computer simulation technology in the field of physical education,” Agro Food Industry Hi-Tech, vol. 28, no. 1, pp. 1617–1620, 2017. https://www.teknoscienze.com/tks_issue/vol_281/

[103] L. Zeming, “Design and implementation of a Korean language teaching system based on virtual reality technology,” Agro Food Industry Hi-Tech, vol. 28, no. 1, pp. 2156–2159, 2017. https://www.teknoscienze.com/tks_issue/vol_281/

[104] T. Shouyan, “Recognition and simulation of martial arts training behavior based on virtual reality,” Agro Food Industry Hi-Tech, vol. 28, no. 1, pp. 2345–2348, 2017. https://www.teknoscienze.com/tks_issue/vol_281/

[105] G. Wei, “Design of computer virtual reality technology in english teaching: Based on computers,” Agro Food Industry Hi-Tech, vol. 28, no. 1, pp. 2374–2378, 2017. https://www.teknoscienze.com/tks_issue/vol_281/

[106] Z. Jinfang, “Research on chemistry experiment instruction system based on 3D simulation,” Agro Food Industry Hi-Tech, vol. 28, pp. 2626–2630, 2017. https://www.teknoscienze.com/tks_issue/vol_281/

[107] D. Cui, T. D. Wilson, R.W. Rockhold, M. N. Lehman & J. C. Lynch, “Evaluation of the effectiveness of 3D vascular stereoscopic models in anatomy instruction for first year medical students,” Anat Sci Educ, vol. 10, no. 1, pp. 34–45, 2017. https://doi.org/10.1002/ase.1626

[108] J. Persson, “A review of the design and development processes of simulation for training in healthcare – A technology-centered versus a human-centered perspective,” Applied Ergonomics, vol. 58, pp. 314–326, 2017. https://doi.org/10.1016/j.apergo.2016.07.007

[109] G. Coro, M. Gómez & A. Suárez , “Haptic simulators with virtual reality environments in dental education: A preliminary teaching diagnosis,” @tic, no. 8, pp. 14–21, 2017. https://doi.org/10.7203/attic.18.9077

[110] M. Goldenberg, A. Garbens, P. Szasz, T. Hauer & T. P. Grantcharov, “Systematic review to establish absolute standards for technical performance in surgery,” Br J Surg, vol. 104, no. 1, pp. 13–21, 2016. https://doi.org/10.1002/bjs.10313

[111] A. Vieira, C. Melo, A. Noites, J. Pereira & J. Mendes, “The effect of virtual reality on a home-based cardiac rehabilitation program on body composition, lipid profile and eating patterns: A randomized controlled trial,” Eur J Integr Med, vol. 969–78, 2016. https://doi.org/10.1016/j.eujim.2016.11.008

[112] J. Serna-Ojeda, E. Graue-Hernández, P. Guzman-Salas & J. Rodriguez-Loaiza, “Simulation training in ophthalmology,” Gaceta Medica de México, vol. 153, no. 1, pp. 111–115, 2017. Available: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=71215

[113] A. Nabavi & J. Schipper, “Op.-Simulation in der Chirurgie,” HNO, vol. 65, no. 7–, 2017. https://doi.org/10.1007/s00106-016-0248-1

[114] G. Robaskewicz, A. Stamm & M. Lyra, “Sialendoscopy Training: Presentation of a Realistic Model,” Int Arch Otorhinolaryngol, vol. 21, no. 1, pp. 17–20, 2016. https://doi.org/10.1055/s-0036-1586250

[115] T. Lim, S. Lee & F. Ke, “Integrating Music into Math in a Virtual Reality Game:: Learning Fractions,” IJGBL, vol. 7, no. 1, pp. 57–73, 2017. https://doi.org/10.4018/IJGBL.2017010104

[116] P. Pelargos, D. Nagasawa, C. Lagman, S. Tenn, J. Demos, S. J. Lee, T. Bui, N. E. Barnette, N. Bhatt, N. Ung, A. Bari, N. Martin & I. Yang, “Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery,” J Clin Neurosci, vol. 35, pp. 1–4, 2016. https://doi.org/10.1016/j.jocn.2016.09.002

[117] H. Hoffmann, D. Oertli, R. Mechera, S. Dell-Kuster, R. Rosenthal, R. Reznick & H. MacDonald, “Comparison of Canadian and Swiss Surgical Training Curricula: Moving on Toward Competency-Based Surgical Education,” JSE, vol. 74, no. 1, pp. 37–46, 2016. https://doi.org/10.1016/j.jsurg.2016.07.013

[118] Z. Zhao, P. Niu, X. Ji & R. M. Sweet, “State of Simulation in Healthcare Education: An Initial Survey in Beijing,” JSLS, vol. 21, no. 11–8, 2017. https://doi.org/10.4293/JSLS.2016.00090

[119] Y. He, Z. Zhang, X. Nan, N. Zhang, F. Guo, E. Rosales & L. Guan, “vConnect: perceive and interact with real world from CAVE,” Multimed Tools Appl, vol. 76, pp. 1479–1508, 2015. https://doi.org/10.1007/s11042-015-3121-4

[120] C. Foronda, C. Alfes, P. Dev, A. J. Kleinheksel, D. Nelson, J. O’donnell & J. T. Samosky, “Virtually Nursing: Emerging Technologies in Nursing Education,” Nurse Educator, vol. 42, no. 1, pp. 14–17, 2016. https://doi.org/10.1097/NNE.0000000000000295

[121] D. Kamińska, T. Sapiński, N. Aitken, A. Della Rocca, M. Barańska & R. Wietsma, “Virtual reality as a new trend in mechanical and electrical engineering education,” Open Physics, vol. 15, no. 1, pp. 936–941, 2017. https://doi.org/10.1515/phys-2017-0114

[122] T. Fleming, L. Bavin, K. Stasiak, E. Hermansson-Webb, S. Merry, C. Cheek, M. Lucassen, H. M. Lau, B. Pollmuller & S. Hetrick, “Serious Games and Gamification for Mental Health: Current Status and Promising Directions,” Front Psychiatry, vol. 7, no. 215, pp. 1–7, 2017. https://doi.org/10.3389/fpsyt.2016.00215

[123] B. Guimarães, L. Dourado, S. Tsisar, M. Diniz, M. Madeira & M. Ferreira, “Rethinking Anatomy: How to Overcome Challenges of Medical Education’s Evolution,” AMP, vol. 30, no. 2 , pp. 134–140, 2017. https://doi.org/10.20344/amp.8404

[124] S. Mafeld, C. Nesbitt, J. McCaslin, A. Bagnall, P. Davey, P. Bose & R. Williams, “Three-dimensional (3D) printed endovascular simulation models: A feasibility study,” Ann Transl Med, vol. 5, no. 3, pp. 1–8, 2017. https://doi.org/10.21037/atm.2017.01.16

[125] K. Threapleton, K. Newberry, G. Sutton, E. Worthington & A. Drummond, “Virtually home: Exploring the potential of virtual reality to support patient discharge after stroke,” BJOT, vol. 80, pp. 99–107, 2016. https://doi.org/10.1177/0308022616657111

[126] P. Buń, R. Wichniarek, F. Górski, D. Grajewski, P. Zawadzki & A. Hamrol, “Possibilities and Determinants of Using Low-Cost Devices in Virtual Education Applications.”,” Eurasia J Math Sci Tech Ed, vol. 13, no. 2, pp. 381–394, 2017. https://doi.org/10.12973/eurasia.2017.00622a

[127] F. Górski, P. Buń, R. Wichniarek, P. Zawadzki & A. Hamrol, “Effective Design of Educational Virtual Reality Applications for Medicine using Knowledge-Engineering Techniques,” Eurasia J Math Sci Tech Ed, vol. 13, no. 2, pp. 395–416, 2017. https://doi.org/10.12973/eurasia.2017.00623a

[128] J. Martín-Gutiérrez, C. E. Mora, B. Añorbe-Díaz & A. González-Marrero, , “Virtual Technologies Trends in Education,” Eurasia J Math Sci Tech Ed, vol. 13, no. 2, pp. 469–486, 2017. https://doi.org/10.12973/eurasia.2017.00626a

[129] M.G. Violante & E. Vezzetti, “Design and implementation of 3D Web-based interactive medical devices for educational purposes.”,” IJIDeM, vol. 11, pp. 31–44, 2017. https://doi.org/10.1007/s12008-015-0277-0

[130] J. S. Shyam & E. Madrigal, “Using Smartphones to Capture, Share, and Experience Virtual Reality 3D Models for Pathology Education,” USCAP 2017, vol. 97, pp. 88–88, 2017. Available: https://www.uscap.org/public/documents/2017-Annual-Meeting/2017_ProgramBook_sm.pdf

[131] J. S. Shyam & E. Madrigal, “Using Smartphones to Capture, Share, and Experience Virtual Reality 3D Models for Pathology Education,” Modern Pathol, no. 247, pp. 143A–143A, 2018. Available: https://www.nature.com/articles/modpathol2016247.pdf?proof=t

[132] G. Breimer, F. Haji, G. Cinalli, E. Hoving & J. M. Drake, “Validity Evidence for the Neuro-Endoscopic Ventriculostomy Assessment Tool (NEVAT),” Oper Neurosurg, vol. 13, no. 1, pp. 60–68, 2015. https://doi.org/10.1227/NEU.0000000000001158

[133] G. Breimer, F. Haji, V. Bodani, M. S. Cunningham, A.-L. Lopez-Rios, A. Okrainec & J. M. Drake, “Simulation-based Education for Endoscopic Third Ventriculostomy: A Comparison Between Virtual and Physical Training Models,” Oper Neurosurg, vol. 13, no. 1, pp. 89–95, 2016. https://doi.org/10.1227/NEU.0000000000001317

[134] D. Castro, L. Barbosa, V. Prada-Jiménez & G. Conde-Méndez, “Diseño y desarrollo de un entorno virtual inmersivo para instruir el principio de superposición de movimientos a estudiantes de ingeniería,” Educación en Ingeniería, vol. 12, pp. 101–108, 2017. https://doi.org/10.26507/rei.v12n23.759

[135] F. Nickel, K. Kowalewski, F. Rehberger, J. D. Hendrie, B. F. Mayer, H. G. Kenngott, V. V. Bintintan, G. R. Linke, L. Fischer & B. P. Müller-Stich, , “Face validity of the pulsatile organ perfusion trainer for laparoscopic cholecystectomy,” Surg Endosc, vol. 31, pp. 714–722, 2016. https://doi.org/10.1007/s00464-016-5025-4

[136] S. Kurenov, J. Cendan, S. Dindar, K. Attwood, J. Hassett, R. Nawotniak, G. Cherr, W. G. Cance & J. Peters, “Surgeon-Authored Virtual Laparoscopic Adrenalectomy Module Is Judged Effective and Preferred Over Traditional Teaching Tools,” Surg Innov, vol. 24, pp. 72–81, 2016. https://doi.org/10.1177/1553350616672971

[137] A.L. Chetlen, C. M. Dell, A. O. Solberg, H. Otero, K. R. Burton, M. T. Heller, N. Lakomkin, S. L. Desouches & S. E. Smith, , “Another Time, Another Space: The Evolution of the Virtual Journal Club,” Acad Radiol, vol. 24, no. 3, pp. 273–285, 2017. https://doi.org/10.1016/j.acra.2016.08.030

[138] N. Thone, M. Winter, R. J. García-Matte & C. González, “Simulation in Otolaryngology: A Teaching and Training Tool,” Acta ORL, vol. 68, no. 2, pp. 115–120, 2017. https://doi.org/10.1016/j.otoeng.2017.02.007

[139] S. E. Van Nuland, R. Eagleson & K. A. Rogers “, “Educational software usability: Artifact or Design?,” Anat Sci Educ, vol. 10, no. 2, pp. 190–199, 2016. https://doi.org/10.1002/ase.1636

[140] W. H. Ryu, S. Chan & G. R. Sutherland, “Supplementary Educational Models in Canadian Neurosurgery Residency Programs,” CJNS, vol. 44, no. 2, pp. 177–183, 2017. https://doi.org/10.1017/cjn.2016.315

[141] R. Patel & R. Dennick, R., “Simulation based teaching in interventional radiology training: is it effective?,” Clin Radiol, vol. 72, no. 3, pp. 266.E7–266.E14, 2016. https://doi.org/10.1016/j.crad.2016.10.014

[142] S. Jang, J. Vitale, R. Jyung & J. Black, “Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment,” Comput Educ, vol. 106 , pp. 150–165, 2016. https://doi.org/10.1016/j.compedu.2016.12.009

[143] M. Davis, “Ingress in Geography: Portals to Academic Success?,” J Geog, vol. 116, no. 2, pp. 89–97, 2017. https://doi.org/10.1080/00221341.2016.1227356

[144] Ch. J. Chugh, J. Pace, J. Singer, C. Tatsuoka, A. Hoffer, W. Selman & N. C Bambakidis, “Use of a surgical rehearsal platform and improvement in aneurysm clipping measures: Results of a prospective, randomized trial,” J Neurosurg, vol. 126, pp. 1–7, 2016. https://doi.org/10.3171/2016.1.JNS152576

[145] M. Kolossváry, A. D. Székely, G. Gerber, B. Merkely & P. Maurovich-Horvat, “CT Images Are Noninferior to Anatomic Specimens in Teaching Cardiac Anatomy-A Randomized Quantitative Study,” JACR, vol. 14, no. 3, pp. 409–415, 2017. https://doi.org/10.1016/j.jacr.2016.09.050

[146] M. Ros, J.-V. Trives & N. Lonjon, “From stereoscopic recording to virtual reality headsets: Designing a new way to learn surgery,” Neuro-Chirurgie, vol. 63, no. 1, pp.1–5, 2017. https://doi.org/10.1016/j.neuchi.2016.08.004

[147] S. Nazarnia & K. Subramaniam, “Role of Simulation in Perioperative Echocardiography Training: Current Evidence and Future Directions,” Semin Cardiothorac Vasc Anesth, vol. 21, no. 1, pp. 81–94, 2016. https://doi.org/10.1177/1089253216655874

[148] A. M. Jarc & M. Curet, “Viewpoint matters: objective performance metrics for surgeon endoscope control during robot-assisted surgery,” Surg Endos, vol. 31, no. 3, pp. 1192–1202, 2016. https://doi.org/10.1007/s00464-016-5090-8

[149] W. Ravyse, S. Blignaut, V. Leendertz & A. Woolner, Alex. , “Success factors for serious games to enhance learning: a systematic review,” VR, vol. 21, no. 1, pp. 31–58, 2016. https://doi.org/10.1007/s10055-016-0298-4

[150] J. R. Garza, K. Kowalewski, M. Friedrich, M. W. Schmidt, T. Bruckner, H. G. Kenngott, L. Fischer, B. Müller-Stich & F. Nickel, “Does rating the operation videos with a checklist score improve the effect of E-learning for bariatric surgical training? Study protocol for a randomized controlled trial,” Trials, vol. 18, no. 1, pp. 1–10, 2017. https://doi.org/10.1186/s13063-017-1886-7

[151] Y. Gu, Z. Zou & X. Chen, “The Effects of vSIM for Nursing™ as a Teaching Strategy on Fundamentals of Nursing Education in Undergraduates,” Clin Simul Nurs, vol. 13, no. 4, pp. 194–197, 2017. https://doi.org/10.1016/j.ecns.2017.01.005

[152] E. Thinggaard, “Take-Home Training in Laparoscopy,” Dan Med J, vol. 64, no. 4, pp. 1–17, 2017. https://ugeskriftet.dk/files/scientific_article_files/2018-08/b5335.pdf

[153] M. Rüth & K. Kaspar, “The E-Learning Setting Circle: First Steps Toward Theory Development in ELearning Research,” EJEL, vol. 15, no. 1, pp. 94–103, 2017. https://files.eric.ed.gov/fulltext/EJ1140098.pdf

[154] A. Bassil, C. Rubod, Y. Borghesi, Y. Kerbage, E.S. Schreiber, H. Azaïs & C. Garabedian, “Operative and diagnostic hysteroscopy: A novel learning model combining new animal models and virtual reality simulation,” Eur J Obstet Gynecol Reprod Biol, vol. 211, pp. 42–47, Apr. 2017. https://doi.org/10.1016/j.ejogrb.2017.01.058

[155] A. Vergis & K. Hardy, “Cognitive and Technical Skill Assessment in Surgical Education: a Changing Horizon,” Indian J Surg, vol. 79, pp. 153–157, 2017. https://doi.org/10.1007/s12262-017-1603-5

[156] E. Omaki, N. Rizzutti, W. Shields, J. Zhu, E. Mcdonald, M. Stevens & A. Gielen, “A systematic review of technology-based interventions for unintentional injury prevention education and behaviour change,” Inj Prev, vol. 23, pp. 138–146, 2016. https://doi.org/10.1136/injuryprev-2015-041740

[157] Y. A. Noureldin & S. Andonian, “Simulation for Percutaneous Renal Access: Where Are We?,” J Endourol, vol. 31, no. S1S10–S19, 2017. https://doi.org/10.1089/end.2016.0587

[158] R. M. Sweet, “The CREST Simulation Development Process: Training the Next Generation,” J Endourol, vol. 31, no. S1, pp. S69–S75, 2017. https://doi.org/10.1089/end.2016.0613

[159] P. Chang, B. C. Chen, C. E. Jones, K. Bunting, Ch. Chakraborti & M. Kahn, “Virtual Reality Supplemental Teaching at Low-Cost (VRSTL) as a Medical Education Adjunct for Increasing Early Patient Exposure,” Med Sci Educ, vol. 28, pp. 3–4, 2017. https://doi.org/10.1007/s40670-017-0483-4

[160] R. Khelemsky, B. Hill & D. Buchbinder D, “Validation of a Novel Cognitive Simulator for Orbital Floor Reconstruction,” J Oral Maxillofac Surg, vol. 75, no. 4, pp. 775–785, 2017. https://doi.org/10.1016/j.joms.2016.11.027

[161] P. Romero, F. Nickel, M. Mantel, G. Frongia, A. Rossler, K. Kowalewski, B.P. Müller-Stich & P. Guenther, “Intracorporal knot tying techniques - which is the right one?,” J Pediatr Surg, vol. 52, no. 4, pp. 633–638, Apr. 2017. https://doi.org/10.1016/j.jpedsurg.2016.11.049

[162] A. Forgione & S. Y. Guraya, “The cutting-edge training modalities and educational platforms for accredited surgical training: A systematic review,” J Res Med Sci, vol. 22, no. 1, pp. 1–9, Apr. 2017. https://doi.org/10.4103/jrms.JRMS_809_16

[163] I. Eardley, Y. Reisman, S. Goldstein, A. Kramer, J. Dean & E. Coleman, “Existing and Future Educational Needs in Graduate and Postgraduate Education,” JSM, vol. 14, no. 4, pp. 475–485, 2017. https://doi.org/10.1016/j.jsxm.2017.01.014

[164] A. F. A. Foad, “Comparing the use of virtual and conventional light microscopy in practical sessions: Virtual reality in Tabuk University,” J Taibah Univ Med Sci, vol. 12, no. 2, pp. 183–186, 2016. https://doi.org/10.1016/j.jtumed.2016.10.015

[165] M. Paschold, T.M. Huber, S. Maedge, S.R. Zeissig, H. Lang & W. Kneist, “Laparoscopic assistance by operating room nurses: Results of a virtual-reality study,” Nurse Educ Today, vol. 51, no. 4, pp. 68–72, 2017. https://doi.org/10.1016/j.nedt.2017.01.008

[166] A. S. Thomsen, D. Bach-Holm, H. Kjaerbo, K. Højgaard-Olsen, Y. Subhi, G. Saleh, Y. S. Park, M. La Cour & L. Konge, Lars., “Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training,” Ophthalmology, vol. 124, no. 4, pp. 524–531, 2016. https://doi.org/10.1016/j.ophtha.2016.11.015

[167] E. Roy, M. Bakr & R. George, “The Need for Virtual Reality Simulators in Dental Education: A Review,” Saudi Dent J, vol. 29, no. 2, pp. 41–47, 2017. https://doi.org/10.1016/j.sdentj.2017.02.001

[168] I. R. Boer, M. Lagerweij, M.W. Vries, P. Wesselink & J. M. Vervoorn, “The Effect of Force Feedback in a Virtual Learning Environment on the Performance and Satisfaction of Dental Students,” Sim Healthc, vol. 12, no. 2, pp. 83–90, 2017. https://doi.org/10.1097/SIH.0000000000000208

[169] M. El Boghdady & A. Alijani, “Feedback in surgical education,” The Surgeon, vol. 15, no. 2, pp. 98–103, 2017. https://doi.org/10.1016/j.surge.2016.06.006

[170] M. El-Beheiry, G. Mccreery & Ch. M. Schlachta, “A serious game skills competition increases voluntary usage and proficiency of a virtual reality laparoscopic simulator during first-year surgical residents’ simulation curriculum,” Surg Endosc, vol. 31, no. 4, pp. 1643–1650, 2016. https://doi.org/10.1007/s00464-016-5152-y

[171] E. Thinggaard, L. Konge, F. Bjerrum, J. Strandbygaard, I. Gögenur & L. Spanager , “Take-home training in a simulation-based laparoscopy course,” Surg Endosc, vol. 31, no. 4, pp. 1738–1745, 2016. https://doi.org/10.1007/s00464-016-5166-5

[172] A. Asadipour, K. Debattista & A. Chalmers, “Visuohaptic augmented feedback for enhancing motor skills acquisition,” Visual Comput, vol. 33, pp. 401–411, 2016. https://doi.org/10.1007/s00371-016-1275-3

[173] T. Ott, M. A. Gerth, L. Emrich, H. Buggenhagen & C. Werner, “Simulation: Aktuelle Konzepte der ärztlichen Aus- und Weiterbildung in der Herz-, Thorax- und Gefäßchirurgie,” Z Herz, vol. 31, no. 2, pp.83–89, 2017. https://doi.org/10.1007/s00398-016-0135-9

[174] D. Banaszek, D. You, J. Chang, M. Pickell, D. Hesse, W. M. Hopman, D. Borschneck y D. Bardana, “Virtual Reality Compared with Bench-Top Simulation in the Acquisition of Arthroscopic Skill: A Randomized Controlled Trial,” J Bone Jt Surg Am, vol. 99, no. 7, pp. e34(1)–e34(8), 2017. https://doi.org/10.2106/JBJS.16.00324

[175] F. J. Real, D. Deblasio, A. Beck, N. Ollberding, D. Davis, B. Cruse, Z. Samaan, D. Mclinden & M. Klein, “A Virtual Reality Curriculum for Pediatric Residents Decreases Rates of Influenza Vaccine Refusal,” Acad Pediatr, vol. 17. no. 4, pp. 431–435, 2017. https://doi.org/10.1016/j.acap.2017.04.098, https://doi.org/10.1016/j.acap.2017.01.010

[176] N. Muralha, M. D. Oliveira, M. A. Ferreira & J. Costa-Maia, “Virtual Reality Simulation as a Tool to Monitor Surgical Performance Indicators: VIRESI Observational Study,” AMP, vol. 30, no. 5, pp. 388–394, 2017. https://doi.org/10.20344/amp.7983

[177] A. S. Thomsen, P. R. Smith, Y. Subhi, M. D. Cour, L. Tang, G. M. Saleh & L. Konge, “High correlation between performance on a virtual-reality simulator and real-life cataract surgery,” Acta Ophthalmol, vol. 95, no. 3, pp. 307–311, 2017. https://doi.org/10.1111/aos.13275

[178] H. Yang, “The design and development of 3D animation based on the virtual reality technology,” Agro Food Industry Hi-Tech, vol. 28, pp. 1792–1796, 2017. https://www.teknoscienze.com/agro-food-industry/agro-food-industry-archive/

[179] J. Langlois, Ch. Bellemare, T. Toulouse & G. Wells, “Spatial abilities and anatomy knowledge assessment: A systematic review,” Anat Sci Educ, vol. 10, no. 3, pp. 235–241, 2016. https://doi.org/10.1002/ase.1655

[180] B. Fenesi, C. Mackinnon, L. Cheng, J. A. Kim & B. C. Wainman, “The Effect of Image Quality, Repeated Study, and Assessment Method on Anatomy Learning,” Anat Sci Educ, vol. 10, no. 3, pp. 249–261, 2016. https://doi.org/10.1002/ase.1657

[181] F. Alam, C. Matava, V. LeBlanc, J. Tarshis & J. Ferenbok, “Alleviating Pre-Operative Anxiety Through Patient Education With Innovative 360 degrees Immersive Virtual Reality,” Anesth Analg, Work In Progress, pp. 1–2, 2017. Available: http://www.casconference.ca/cas-media/2017/posters/286519.pdf

[182] A. Shakir, A. Chattopadhyay, L. S. Paek, R. Mcgoldrick, M. Chetta, K. Hui & G. K. Lee, “The Effects of Music on Microsurgical Technique and Performance: A Motion Analysis Study,” Ann PlastSurg, vol. 78, no. 5, Suppl 4, pp. S243–S247, 2017. https://doi.org/10.1097/SAP.0000000000001047

[183] E. Ucar, H. Ustunel, T. Civelek & I. Umut, “Effects of using a force feedback haptic augmented simulation on the attitudes of the gifted students towards studying chemical bonds in virtual reality environment,” BIT, vol. 36, no. 5, pp. 540–547, 2017. https://doi.org/10.1080/0144929X.2016.1264483

[184] X. Zhang, S. Jiang, P. Ordóñez, M. D. Lytras & Y. Sun, “How virtual reality affects perceived learning effectiveness: a task–technology fit perspective,” BIT, vol. 36, no. 5, pp. 548–556, 2017. https://doi.org/10.1080/0144929X.2016.1268647

[185] S. Xiang & L. Ch. Wang, “VGLS: A Virtual Geophysical Laboratory System Based on C# and Viustoolsand Its Application for Geophysical Education,” Comp Appl Eng Educ, vol. 25, no. 3, pp. 335–344, 2017. https://doi.org/10.1002/cae.21801

[186] Z. Taçgin & A. Arslan, “The perceptions of CEIT postgraduate students regarding reality concepts: Augmented, virtual, mixed and mirror reality,” Educ Inf Technol, vol. 22, no. 3, pp. 1179–1194, 2016. https://doi.org/10.1007/s10639-016-9484-y

[187] A. P. Proenca, M. Miranda, R. G. Domingues, L. R. Borges, A. Cardoso & P. Notargiacomo, “Analysis of the Degree of Influence of Education and Training Emphasesin Three-Dimensional Virtual Learning Environments,” IEEE Lat Am T, vol. 15, no. 5, pp.974–980, 2017. https://doi.org/10.1109/TLA.2017.7912595

[188] W. Hu, Z. Lei, H. Zhou, G. Liu, Q. Deng, D. Zhou & Z. Liu, “Plug-in Free Web-Based 3-D Interactive Laboratory for Control Engineering Education,” IEEE Trans Ind Electron, vol. 64, no. 5, pp. 3808–3818, 2017. https://doi.org/10.1109/TIE.2016.2645141

[189] M. Le Lous, V. Tsatsaris, A. Tesniere & G. Grangé, “Improving students’ ability to perform a standardized foetal biometry plane using ultrasound simulators,” J Gynecol Obstet Hum Reprod, vol. 46, no. 5, pp. 439–443, 2017. https://doi.org/10.1016/j.jogoh.2017.04.004

[190] S. González, J. A. Juanes & P. Ruisoto, “Virtual Reality Educational Tool for Human Anatomy,” J Med Syst, vol. 41, no. 76, pp.76–79, 2017. https://doi.org/10.1007/s10916-017-0723-6

[191] M. E. Hogg, V. Tam, M. Zenati, S. Novak, J. Miller, A. H. Zureikat & H. J. Zeh, “Mastery-Based Virtual Reality Robotic Simulation Curriculum: The First Step Toward Operative Robotic Proficiency,” J Surg Educ, vol. 74, no. 3, pp. 477–485, 2017. https://doi.org/10.1016/j.jsurg.2016.10.015

[192] B. Zevin, N. Dedy, E. Bonrath & T. Grantcharov, “Comprehensive simulation-enhanced training curriculum for an advanced minimally invasive procedure: A randomized controlled trial,” Surg Obes Relat Dis, vol. 13, no. 5, pp. 815–824, 2016. https://doi.org/10.1016/j.soard.2016.11.019

[193] C. Nilsson, J. L. Sorensen, L. Konge, M. Westen, M. Stadeager, B. S. Ottesen & F. Bjerrum, “Simulation-based camera navigation training in laparoscopy—a randomized trial,” Surg Endosc, vol. 31, no. 5, pp.2131–2139, 2016. https://doi.org/10.1007/s00464-016-5210-5

[194] K. Kowalewski, J. D. Hendrie, M. W. Schmidt, C. R. Garrow, T. Bruckner, T. Proctor, S. Paul, D. Adigüzel, S. Bodenstedt, A. Erben, H. G. Kenngott, Y. Erben, S. Speidel, B. P. Müller-Stich & F. Nickel, “Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon,” Surg Endosc, vol. 31, no. 5, pp. 2155–2165, 2016. https://doi.org/10.1007/s00464-016-5213-2

[195] J. Matzke, C. Ziegler, K. Martin, S. Crawford & E. Sutton, “Usefulness of VR in Assessment of Medical Student Laparoscopic Skill,” J Surg Res, vol. 211, pp. 191–195, 2016. https://doi.org/10.1016/j.jss.2016.11.054

[196] I. Navarro & D. Fonseca,, “New visualization technologies to improve the representation of architecture in education,” ACE, vol. 12, pp. 219–238, 2017. https://doi.org/10.5821/ace.12.34.5290

[197] K. Bekelis, D. Calnan, N. Simmons, T. A. MacKenzie & G. Kakoulides, “Effect of an Immersive Preoperative Virtual Reality Experience on Patient Reported Outcomes: A Randomized Controlled Trial,” Ann Surg, vol. 265, no. 6, pp. 1068–1073, 2016. https://doi.org/10.1097/SLA.0000000000002094

[198] V. Abramov, V. Kugurakova, A. Rizvanov, M. Abramskiy, N. Manakhov, M. Evstafiev & D. Ivanov, “Virtual Biotechnological Lab Development,” BioNanoScience, vol. 7, no. 2, pp. 363–365, 2016. https://doi.org/10.1007/s12668-016-0368-9

[199] M. Howard, “Investigating the simulation elements of environment and Control: Extending the Uncanny Valley Theory to simulations,” Comput Educ, vol. 109, pp. 216–232, 2017. https://doi.org/10.1016/j.compedu.2017.03.005

[200] J. Muñoz-Cristóbal, V. Gallego-Lema, H. Arribas-Cubero, A. Martínez-Monés & J. Asensio-Pérez, “Using virtual learning environments in bricolage mode for orchestrating learning situations across physical and virtual spaces,” Comput Educ, vol. 109, pp. 233–252, 2017. https://doi.org/10.1016/j.compedu.2017.03.004

[201] H. Kim & F. Ke, “Effects of game-based learning in an OpenSim-supported virtual environment on mathematical performance,” Interac Learn Env, vol. 25, no. 4, pp. 1–15, 2016. https://doi.org/10.1080/10494820.2016.1167744.

[202] Y. Politis, N. Robb, A. Yakkundi, K. Dillenburger, N. Herbertson, B. Charlesworth & L. Goodman, “People with Disabilities Leading the Design of Serious Games and Virtual Worlds,” IJSG, vol. 4, no. 2, pp. 1–11, 2017. https://doi.org/10.17083/ijsg.v4i2.160

[203] K. Brown, N. Mosley & J. Tierney, “Battle of the bots: a comparison of the standard da Vinci and the da Vinci Surgical Skills Simulator in surgical skills acquisition,” J Robot Surg, vol. 11, no. 2, pp. 159–162, 2017. https://doi.org/10.1007/s11701-016-0636-2

[204] C. Stepniak, B. Wickens, M. Husein, J.A Paradis, H. M. Ladak, K. M. Fung & S. K. Agrawal, “Blinded randomized controlled study of a web-based otoscopy simulator in undergraduate medical education,” Laryngoscope, vol. 127, no. 6, pp. 1306–1311, 2017. https://doi.org/10.1002/lary.26246

[205] J. T. Lui & M. Y. Hoy, “Evaluating the Effect of Virtual Reality Temporal Bone Simulation on Mastoidectomy Performance: A Meta-analysis,” Otolaryngol Head Neck Surg, vol. 156, no. 6, pp. 1018–1024, 2017. https://doi.org/10.1177/0194599817698440

[206] P. Crochet, R. Aggarwal, S. Knight, S. V. Berdah, L. Boubli & A. Agostini, “Development of an evidence-based training program for laparoscopic hysterectomy on a virtual reality simulator,” Surg Endosc, vol. 31, no. 6, pp. 2474–2482, 2016. https://doi.org/10.1007/s00464-016-5249-3

[207] K. Jensen, F. Bjerrum, H. Jessen Hansen, R. Petersen, J. Pedersen & L. Konge, “Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (VATS) lobectomy,” Surg Endosc, vol. 31, no. 6, pp. 2520–2528, 2016. https://doi.org/10.1007/s00464-016-5254-6

[208] R. Yilmaz & Y. Goktas, “Using augmented reality technology in storytelling activities: examining elementary students’ narrative skill and creativity,” VR, vol. 21, pp. 75–89, 2016. https://doi.org/10.1007/s10055-016-0300-1

[209] R. Liu, J. Salisbury, A. Vahabzadeh & N. Sahin, “Feasibility of an Autism-Focused Augmented Reality Smartglasses System for Social Communication and Behavioral Coaching,” Front Pediatr, vol. 5, pp. 1–8, 2017. https://doi.org/10.3389/fped.2017.00145

[210] H. Scholten, A. Pourtaherian, N. Mihajlovic, H. Korsten & R. A. Bouwman, “Improving needle tip identification during ultrasound-guided procedures in anaesthetic practice,” Anaesthesia, vol. 72, no. 7, pp. 889–904, 2017. https://doi.org/10.1111/anae.13921

[211] R. T. Abu Alatta & A. A. Freewan, “Investigating the effect of employing immersive virtual environment on enhancing spatial perception within design process,” Archnet-Ijar, vol. 11, no. 2, pp. 219–238, 2017. https://doi.org/10.26687/archnet-ijar.v11i2.1258

[212] T. Dwyer, R. Schachar, T. Leroux, M. Petrera, J. Cheung, R. Greben, P. Henry, D. Ogilvie-Harris, J. Theodoropoulos & J. Chahal, “Performance Assessment of Arthroscopic Rotator Cuff Repair and Labral Repair in a Dry Shoulder Simulator,” Arthroscopy, vol. 33, no. 7, pp. 1310–1318, 2017. https://doi.org/10.1016/j.arthro.2017.01.047

[213] J. A. Frank & V. Kapila, “Mixed-reality learning environments: Integrating mobile interfaces with laboratory test-beds,” Comput Educ, vol. 110, pp. 88–104, 2017. https://doi.org/j.compedu.2017.02.009

[214] C. Wagner, V. Srougi & R. E. Sánchez-salas, “Getting ready for the first robotic prostatectomy, from basics to real practice,” Curr Opin Urol, vol. 27, no. 4, pp. 323–329, 2017. https://doi.org/10.1097/MOU.0000000000000409

[215] S. B. Shafiei, A. A. Hussein & K. A. Guru, “Cognitive learning and its future in urology: Surgical skills teaching and assessment,” Curr Opin Urol, vol. 27, no. 1, pp. 342–347, 2017. https://doi.org/10.1097/MOU.0000000000000408

[216] M. Tz-Yauw Lin, J.-S. Wang, H.-M. Kuo & Y. Luo, “A Study on the Effect of Virtual Reality 3D Exploratory Education on Students’ Creativity and Leadership,” Eurasia J Math Sci Tech Ed, vol. 13, no. 7, pp. 3151–3161, 2017. https://doi.org/10.12973/eurasia.2017.00709a

[217] S.-Y. Qu, T. Hu, J.-L. Wu & X.-M. Hou, “Experimental Teaching Centre Platform “New Engineering” Practice Teaching Mode,” Eurasia J Math Sci Tech Ed, vol. 13, no. 7, pp. 4271–4279, 2017. https://doi.org/10.12973/eurasia.2017.00810a

[218] M. Strøm, L.B. Lönn, B. Bech, T. V. Schroeder & L. Konge, “Assessment of Competence in EVAR Procedures: A Novel Rating Scale Developed by the Delphi Technique,” Eur J Vasc Endovasc Surg, vol. 54, no. 1, pp. 34–41, 2017. https://doi.org/10.1016/j.ejvs.2017.04.001

[219] L. Barbieri, F. Bruno & M. Muzzupappa, “Virtual museum system evaluation through user studies,” J Cult Herit, vol. 26, pp. 101–108, 2017. https://doi.org/10.1016/j.culher.2017.02.005

[220] F. Schlottmann, N. S. Murty & M. G. Patti, “Simulation Model for Laparoscopic Foregut Surgery: The University of North Carolina Foregut Model,” J Laparoendosc Adv Surg Tech A, vol. 27, no. 7, pp. 661–665, 2017. https://doi.org/10.1089/lap.2017.0138

[221] P. Weinstock, R. Rehder, S. P. Prabhu, P. Forbes, C. J. Roussin & A. R. Cohen, “Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects,” J Neurosurg Pediatr, vol. 20, no. 1, pp. 1–9, 2017. https://doi.org/10.3171/2017.1.PEDS16568

[222] G. Enani, Y. Watanabe, K. Mckendy, E. Bilgic, L. Feldman, G. Fried & M. Vassiliou, “What are the Training Gaps for Acquiring Laparoscopic Suturing Skills?,” J Surg Educ, vol. 74, no. 4, pp. 656–662, 2017. https://doi.org/10.1016/j.jsurg.2016.12.004

[223] M. Morgan, A. Aydin, A. Salih, S. Robati & K. Ahmed, “Current Status of Simulation-based Training Tools in Orthopedic Surgery: A Systematic Review,” J Surg Educ, .vol. 74, no. 4, pp. 698–716, 2017. https://doi.org/10.1016/j.jsurg.2017.01.005

[224] C. Brinkmann, M. Fritz, U. Pankratius, R. Bahde, P. A. Neumann, S. Schlueter, N. Senninger & E. J. Rijcken, “Box- or Virtual-Reality Trainer: Which Tool Results in Better Transfer of Laparoscopic Basic Skills?-A Prospective Randomized Trial,” J Surg Educ, vol. 74, no. 4, pp. 724–735, 2017. https://doi.org/10.1016/j.jsurg.2016.12.009

[225] S. Tarpada, W. D. Hsueh & M. J Gibber, “Resident and Student Education in Otolaryngology: A 10-Year Update onE-Learning,” Laryngoscope, vol. 27, no. 7, pp. E219–E224, 2017. https://doi.org/10.1002/lary.26320

[226] A. Lugmayr, E. Sutinen, J. Suhonen, C. Islas, H. Hlavacs & C. Suero, “Serious storytelling - a first definition and review,” Multimed Tools Appl, vol. 76, pp. 15707–15733, 2017. https://doi.org/10.1007/s11042-016-3865-5

[227] J. E. Deutsch & S. W. McCoy, “Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation,” Pediatr Phys Ther, vol. 29, Suppl 3, pp. S23–S36, 2017. https://doi.org/10.1097/PEP.0000000000000387

[228] R. E. Sánchez-Alonso, J. Ortega-Moody, J. J. Gonzalez-Barbosa & G. Reyes-Morales, “Uso de Plataformas para el Desarrollo de Aplicaciones Virtuales en el Modelado de Robot Manipuladores,” RIAI, vol. 14, no 3, pp. 279–287, 2017. https://doi.org/10.1016/j.riai.2017.04.001

[229] Joaqui Robles, Darwin Ortiz & Granja, Dorys Noemy,, “Educación como práctica social: la cuestión del otro y su reconocimiento,” Sophia, vol. 23, no. 2, pp. 195–218, 2017. https://doi.org/10.17163/soph.n23.2017.07

[230] M. W. Brackmann, P. B. Andreatta, K. McLean & R. K. Reynolds, “Development of a novel simulation model for assessment of laparoscopic camera navigation,” Surg Endosc, vol. 31, no. 7, pp. 3033–3039, 2016. https://doi.org/10.1007/s00464-016-5323-x

[231] M. Sabalic & J. D. Schoener, , “Virtual Reality-Based Technologies in Dental Medicine: Knowledge, Attitudes and Practice Among Students and Practitioners,” Technol Knowl Learn, vol. 22, no. 2, pp. 199–207, 2017. https://doi.org/10.1007/s10758-017-9305-4

[232] D. Vlachopoulos & A. Makri, “The effect of games and simulations on higher education: a systematic literature review,” Int J Educ Technol High Educ, vol. 14, pp. 1–33, 2017. https://doi.org/10.1186/s41239-017-0062-1

[233] A. Berndt, C. Murray, K. Kennedy, M. Stanley & S. Gilbert-Hunt, “Effectiveness of distance learning strategies for continuing professional development (CPD) for rural allied health practitioners: A systematic review,” BMC Med Educ, vol. 17, no. 1, pp. 1–13, 2017. https://doi.org/10.1186/s12909-017-0949-5

[234] S. Bennett, S. A. Rodger, C. Fitzgerald & L. A. Gibson, “Simulation in Occupational Therapy Curricula: A literature review,” Aust Occup Ther J, vol. 64, no. 4, pp. 314–327, 2017. https://doi.org/10.1111/1440-1630.12372

[235] F. B. Delacy, J. Nehme, A. M. Lacy & M. Chand, “Educational technology: revolutionizing surgical education,” Br J Hosp Med, vol. 78, no. 8, pp. 426–427, 2017. https://doi.org/10.12968/hmed.2017.78.8.426

[236] L. M. Knowles, E. Stelzer, K. S. Jovel & M. O’Connor, “A pilot study of virtual support for grief: Feasibility, acceptability, and preliminary outcomes,” Comput Hum Behav, vol. 73, pp. 650–658, 2017. https://doi.org/10.1016/j.chb.2017.04.005

[237] N. Seel, “Model-based learning: a synthesis of theory and research,” ETRD, vol. 65, no. 4, pp. 931–966, 2017. https://doi.org/10.1007/s11423-016-9507-9

[238] K. Mumtaz, M. Iqbal, S. Khalid, T. Rafiq, S. M. Owais & M. Al Achhab, “An E-Assessment Framework for Blended Learning with Augmented Reality to Enhance the Student Learning,” Eurasia J Math Sci Tech Ed, vol. 13, no. 8, pp. 4419–4436, 2017. https://doi.org/10.12973/eurasia.2017.00938a

[239] R. Bakker, D. Deng, P. R. Wesselink & J. M. Vervoorn, “Effect of students’ determination of testing time on their test performance,” Eur J Dent Educ, vol. 21, no. 3–, 2016. https://doi.org/n/a-n/a.10.1111/eje.12192

[240] Q. Ren, Y. Wang, Q. Zheng, L. Ye, X. Zhou & L. Zhang, “Survey of student attitudes towards digital simulation technologies at a dental school in China,” Eur J Dent Educ, vol. 21, no. 3, pp. 180–186, 2017. https://doi.org/10.1111/eje.12198

[241] S. Fu, X. Liu, L. Zhou, M. Zhou & L. Wang, “Applied Research on Laparoscopic Simulator in the Resident Surgical Laparoscopic Operation Technical Training,” NIJS, vol. 79, no. 4, pp. 288–293, 2017. https://doi.org/10.1007/s12262-016-1468-z

[242] I. Calvo, F. López, E. Zulueta & P. González-Nalda, “Towards a methodology to build virtual reality manufacturing systems based on free open software technologies,” IJIDeM, vol. 11, no. 3, pp. 569–580, 2016. https://doi.org/10.1007/s12008-016-0311-x

[243] K. Takahashi, H. Inomo, W. Shiraki, Ch. Isouchi & M. Takahashi, “Experience-Based Training in Earthquake Evacuation newline for School Teachers,” J Disaster Res, vol. 12, no. 4, pp. 782–791, 2017. https://doi.org/10.20965/jdr.2017.p0782

[244] A. Aydin, R. Fisher, M. S. Khan, P. Dasgupta & K. Ahmed, “Training, assessment and accreditation in surgery,” PMJ, vol. 93, no. 102, pp. 441–448, 2017. https://doi.org/10.1136/postgradmedj-2016-134701

[245] A. E. Olszewski & T. Wolbrink, “Serious Gaming in Medical Education: A Proposed Structured Framework for Game Development,” Simul Healthc, vol. 12, no. 4, pp. 240–253, 2016. https://doi.org/10.1097/SIH.0000000000000212

[246] A. Skulmowski & G. D. Rey, “Measuring Cognitive Load in Embodied Learning Settings,” Front. Psychol, vol. 8, pp. 1–6, 2017. https://doi.org/10.3389/fpsyg.2017.01191

[247] A. Cando, F. Alcoser, H. Villa & R. Ramos, “Los entornos virtuales. Un plus en la docencia universitaria de la escuela superior politécnica de chimborazo,” 3C TIC, vol. 6, no. 3, pp. 26–42, 2017. https://doi.org/10.17993/3ctic.2017.57.26-42

[248] C. S. Biyani, V. S. Hanchanale, S. Rajpal, S. Jain, M. Garthwaite, J. Cartledge, B. K. Somani, P. Cornford, B. K. Gowda, P. Koenig, F. Reeves, K. Rogawski, A. T. Myatt, I. Eardley & T. Terry, “First urology simulation boot camp in the United Kingdom,” AFJU, vol. 23, no. 3, pp. 258–267, 2017. https://doi.org/j.afju.2017.03.002

[249] K. McMillan, K. Flood & R. Glaeser, “Virtual reality, augmented reality, mixed reality, and the marine conservation movement,” Aquat Conserv, vol. 27, no. S1, pp. 162–168, 2017. https://doi.org/10.1002/aqc.2820

[250] L. Hightow-Weidman, K. Muessig, J. Bauermeister, S. LeGrand & L. E. Fiellin, “The future of digital games for HIV prevention and care,” Curr Opin HIV AIDS, vol. 12, no. 1, pp. 501–507, 2017. https://doi.org/10.1097/COH.0000000000000399

[251] F. J. Real, D. J. DeBlasio, N. J. Ollberding, D. J. Davis, B. Cruse, D. McLinden & M. D. Klein, “Resident perspectives on communication training that utilizes immersive virtual reality,” Educ Health, vol. 30, no. 3, pp. 228–231, 2017. https://doi.org/10.4103/efh.EfH_9_17

[252] P. Lazarus, E. Pire, C. Sapa, L. Ruffenach, M. Saur, P. Liverneaux, J.J. Hidalgo Diaz, “Design and evaluation of a new synthetic wrist procedural simulator (Wristsim®) for training of distal radius fracture fixation by volar plating,” Hand Surg Rehabil, vol. 36, no. 4, pp. 275–280, 2017. https://doi.org/10.1016/j.hansur.2017.03.002

[253] L. Freina, R. Bottino, M. Tavella & C. Chiorri, “Evaluation of Spatial Perspective Taking Skills using a Digital Game with Different Levels of Immersion,” IJSG, vol. 4, no. 3, pp. 31–43, 2017. https://doi.org/10.17083/ijsg.v4i3.178

[254] C. Carbonell-Carrera & J. L. Saorín, “Geospatial Google Street View with Virtual Reality: A Motivational Approach for Spatial Training Education,” ISPRS Int J Geo-Inf, vol. 6, no. 9, pp. 1–10, 2017. https://doi.org/10.3390/ijgi6090261

[255] R. P. Lope & N. Medina-Medina, “A Comprehensive Taxonomy for Serious Games,” JECR, vol. 55, pp. 629–672, 2017. https://doi.org/10.1177/0735633116681301

[256] B. Eftekhar, “Smartphone as a Remote Touchpad to Facilitate Visualization of 3D Cerebral Angiograms during Aneurysm Surgery,” J Neurol Surg A Cent Eur Neurosurg, vol. 78, no. 5, pp. 502–506, 2017. https://doi.org/10.1055/s-0037-1598049

[257] M. Marquess, S. Pinegar, N. Williams, C. Giordano, B. Leiby, M. Hurwitz, A. Dicker & R. Den, “A pilot study to determine if the use of a virtual reality education module reduces anxiety and increases comprehension in patients receiving radiation therapy,” ROJ, vol. 6, no. 4, pp. 1–6, 2017. https://doi.org/10.1007/s13566-017-0298-3.7

[258] O. Ossmy & R. Mukamel, “Using Virtual Reality to Transfer Motor Skill Knowledge from One Hand to Another,” JoVE, no. 127, pp. 1–7, 2017. https://doi.org/10.3791/55965

[259] M. Pfandler, M. Lazarovici, P. Stefan, P. Wucherer & M. Weigl, “Virtual reality-based simulators for spine surgery: a systematic review,” Spine J, vol. 17, no. 9, pp. 1352–1363, 2017. https://doi.org/10.1016/j.spinee.2017.05.016

[260] J. S. Tutak, “Virtual reality and exercises for paretic upper limb of stroke survivors,” TV-TG, vol. 24, no. 2, pp. 451–458, 2017. https://doi.org/10.17559/TV-20161011143721

[261] A. Alsalamah, R. C. Campo, V. Tanos, G. Grimbizis, Y. V. Belle, K. Hood, N. D. Pugh & N. N. Amso, “Face and content validity of the virtual reality simulator ScanTrainer®,” Gynecol Surg, vol. 14, no. 1, pp. 1–8, 2017. https://doi.org/10.1186/s10397-017-1020-6

[262] P. Sirimanna & M. A. Gladman, “Development of a proficiency-based virtual reality simulation training curriculum for laparoscopic appendicectomy,” Anz J Surg, vol. 87, no. 10, pp. 760–766, 2017. https://doi.org/10.1111/ans.14135

[263] R. Booth, B. Sinclair, G. Strudwick, L. Brennan, J. Tong, H. Relouw, M. Hancock & W. Vlasic, “Identifying Error Types Made by Nursing Students Using eMAR Technology,” Clinic Simul Nurs, vol. 13, no. 10, pp. 492–500, 2017. https://doi.org/10.1016/j.ecns.2017.05.016

[264] I. Dubovi, S. T. Levy & E. Dagan, , “Now I know how! The learning process of medication administration among nursing students with non-immersive desktop virtual reality simulation,” Comput Educ, vol. 113, pp. 16–27, 2017. https://doi.org/j.compedu.2017.05.009

[265] S. B. Atallah, A. C. DuBose, J. P. Burke, G. Nassif, T. deBeche-Adams, T. Frering, M. Albert & J. R.T. Monson, “Uptake of Transanal Total Mesorectal Excision in North America: Initial Assessment of a Structured Training Program and the Experience of Delegate Surgeons,” Dis Colon Rectum, vol. 60, no. 10, pp. 1023–1031, 2017. https://doi.org/10.1097/DCR.0000000000000823

[266] S. Zhang, J. Xu, H. Gou & J. Tan, “A Research Review on the Key Technologies of Intelligent Design for Customized Products,” Eng J, vol. 3, no. 5, pp. 631–640, 2017. https://doi.org/10.1016/J.ENG.2017.04.005

[267] E. Filgueiras Damasceno, P. Augusto Nardi, A. K. Anastacio Silva, J. B. Dias Junior and A. Cardoso, “3D Virtual Simulation approach in Brazilian Vocational Education for Computers Network Adapted to Student Knowledge,” IEEE Lat Am Trans, vol. 15, no. 10, pp. 1917–1925, Oct. 2017. https://doi.org/10.1109/TLA.2017.8071236

[268] K. Stepan, J. Zeiger, S. Hanchuk, A. Del Signore, R. Shrivastava, S. Govindaraj & A. Iloreta, “Immersive virtual reality as a teaching tool for neuroanatomy,” Inter Forum Allergy Rhinol, vol. 7, no. 10, pp. 1006–1013, 2017. https://doi.org/10.1002/alr.21986

[269] K. Cheeyong, J.Ch. Kim, J. Se Hoon & E.-K. Kim, “Marine Leisure Sports Based on Realistic VR System for BLeisure Busan,” IJGDC, vol. 10, no. 10, pp. 69–78, 2017. https://doi.org/10.14257/ijgdc.2017.10.10.06

[270] I. Navarro, O. de Reina, D. Fonseca, M. Gomez & Á. Ferrer, “Virtual Reality Using Smart-Devices in Educational Frameworks: Case Study: Museum Casa Batlló,” IJTHI, vol. 13, no. 4, pp. 50–61, 2017. https://doi.org/10.4018/978-1-7998-1757-4.ch036

[271] Y. Lee, W. Choi, K. Lee, Ch. Song & S. Lee, “Virtual Reality Training With Three-Dimensional Video Games Improves Postural Balance and Lower Extremity Strength in Community-Dwelling Older Adults,” J Aging Phys Act, vol. 25, no. 4, pp. 621–627, 2017. https://doi.org/10.1123/japa.2015-0271

[272] T. Yamashita, M. Kumar, K. Matsuzaki & H. Tomozawa, “Development of a Virtual Reality Experience System for Interior Damage Due to an Earthquake –Utilizing E-Defense Shake Table Test–,” J Disaster Res, vol. 12, no. 5, pp. 882–890, 2017. https://doi.org/10.20965/jdr.2017.p0882

[273] N. Almohaimeed, Fazal-e-Amin & A. Al-Wabil, “Virtual Reality-Based Surgical Simulation Training Usability Heuristics,” J Med Imaging Health Inform, vol. 7, no. 6, pp. 1338–1345, 2017. https://doi.org/10.1166/jmihi.2017.2200

[274] T. Kin, H. Nakatomi, N. Shono, S. Nomura, T. Saito, H. Oyama & N. Saito, “Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature,” Neurol Med Chir, vol. 57, no. 10 , pp. 513–520, 2017. https://doi.org/10.2176/nmc.ra.2016-0320

[275] L. Jaksa, T. Haidegger, P. Galambos & R. Kiss, “A laparoszkópos készségfejlesztés eszközei – elérhető trénerek és szimulátorok,” Orvosi Hetilap, vol. 158, no. 40, pp. 1570–1576, 2017. https://doi.org/10.1556/650.2017.30860

[276] L. Javia & M. G. Sardesai, “Physical Models and Virtual Reality Simulators in Otolaryngology,” Otolaryngol Clin North Am, vol. 50, no. 5, pp. 875–891, 2017. https://doi.org/10.1016/j.otc.2017.05.001

[277] J. A. Burns, L. K. Adkins, S. Dailey & A. Klein , “Simulators for Laryngeal and Airway Surgery,” Otolaryngol Clin North Am, vol. 50, no. 5, pp. 903–922, 2017. https://doi.org/10.1016/j.otc.2017.05.003

[278] G. Wiet, M. Sølvsten & S. Andersen, “Otologic Skills Training,” Otolaryngol Clin North Am, vol. 50, no. 5933–945, 2017. https://doi.org/10.1016/j.otc.2017.05.005

[279] V. Hain & M. Ganobjak, “Forgotten Industrial Heritage in Virtual Reality—Case Study: Old Power Plant in Piešt’any, Slovakia,” PTVE, vol. 26, no. 4, pp. 355–365, 2017. https://doi.org/10.1162/PRES_a_00309

[280] R. Zamora-Musa, J. Velez & H. Paez-Logreira, “Evaluating Learnability in a 3D Heritage Tour,” Presence: Teleoperators Virtual Environ, vol. 26, no. 4, pp. 366377, 2017. https://doi.org/10.1162/PRES_a_00305

[281] Y. Cai, J. Zheng, Y. Zhang, X. Wu, Y. Chen, B. Tan, B. Yang, T. Liu & N. Magnenat-Thalmann, “Madam Snake White: A Case Study on Virtual Reality Continuum Applications for Singaporean Culture and Heritage at Haw Par Villa,” PTVE, vol. 26, no. 4, pp. 378–388, 2017. https://doi.org/10.1162/PRES_a_00303

[282] W. C. Pang, C. Y. Wong & G. Seet, “Exploring the Use of Robots for Museum Settings and for Learning Heritage Languages and Cultures at the Chinese Heritage Centre,” PTVE, vol. 26, no. 4, pp. 420–435, 2017. https://doi.org/10.1162/PRES_a_00306

[283] J. C. Chou, T. Kosowsky, A. R. Payal, L. A. Gonzalez & M. K. Daly, “Construct and face validity of the eyesi indirect ophthalmoscope simulator,” Retina, vol. 37, no. 10, pp. 1967–1976, 2017. https://doi.org/10.1097/IAE.0000000000001438

[284] A. Plessas, “Computerized Virtual Reality Simulation in Preclinical Dentistry: Can a Computerized Simulator Replace the Conventional Phantom Heads and Human Instruction?,” Simul Healthc, vol. 12, no. 5, pp. 332–338, 2017. https://doi.org/10.1097/SIH.0000000000000250

[285] K. Kowalewski, J. D. Hendrie, M. W. Schmidt, T. Proctor, S. Paul, C. R. Garrow, H. G. Kenngott, B. P. Müller-Stich & F. Nickel, “Validation of the mobile serious game application Touch Surgery™ for cognitive training and assessment of laparoscopic cholecystectomy,” Surg Endosc, vol. 31, no. 10, pp. 4058–4066, 2017. https://doi.org/10.1007/s00464-017-5452-x

[286] A. Micko, K. Knopp, E. Knosp & S. Wolfsberger, “Microsurgical Performance After Sleep Interruption: A NeuroTouch Simulator Study,” World Neurosurg, vol. 106, pp. 92–101, 2017. https://doi.org/10.1016/j.wneu.2017.06.142

[287] A. Bernardo, “Establishment of Next-Generation “Neurosurgery Research and Training Laboratory with Integrated Human Performance Monitoring,” World Neurosurg, vol. 106, pp. 991–1000, 2017. https://doi.org/10.1016/j.wneu.2017.06.160

[288] A. Bernardo, “Virtual Reality and Simulation in Neurosurgical Training,” World Neurosurg, vol. 106, pp. 1015–1029, 2017. https://doi.org/10.1016/j.wneu.2017.06.140

[289] R. Bhattacharyya, D. J. Davidson, K. Sugand, M. J. Bartlett, R. Bhattacharya & C. Gupte, “Knee Arthroscopy Simulation: A Randomized Controlled Trial Evaluating the Effectiveness of the Imperial Knee Arthroscopy Cognitive Task Analysis (IKACTA) Tool,” J Bone Jt Surg, vol. 99, no. 19e103(1)–e103(9), 2017. https://doi.org/10.2106/JBJS.17.00190

[290] L. Zeuwts, P. Vansteenkiste, F. Deconinck, G. Cardon & M. Lenoir, “Hazard perception training in young bicyclists improves early detection of risk: A cluster-randomized controlled trial,” Accid Anal Prev, vol. 108, c, pp. 112–121, 2017. https://doi.org/10.1016/j.aap.2017.08.024

[291] C. Moro, Z. Stromberga, A. Raikos & A. Stirling, “The effectiveness of virtual and augmented reality in health sciences and medical anatomy,” Anat Sci Educ, vol. 10, no. 6, pp. 549–559, 2017. https://doi.org/10.1002/ase.1696

[292] S. E. Van Nuland & K. A. Rogers, “The skeletons in our closet: E-learning tools and what happens when one side does not fit all,” Anat Sci Educ, vol. 10, no. 6, pp. 570–588, 2017. https://doi.org/10.1002/ase.1708

[293] S. Davison, N. T. Raison, M. S. Khan, P. Dasgupta & K. Ahmed, “Mental training in surgical education: a systematic review,” Anz J Surg, vol. 87, no. 11, pp. 873–878, 2017. https://doi.org/10.1111/ans.14140

[294] T. Huber, M. Paschold, C. Hansen, H. Lang & W. Kneist, “[“I will do laparoscopy somewhere else” : Total, highly immersive virtual reality without side effects?],” Der Chirurg, vol. 88, no. 11, pp. 956–960, 2017. https://doi.org/10.1007/s00104-017-0465-5

[295] L. M. Al-Saud, F. Mushtaq, M. J. Allsop, P. Culmer, I. A. Mirghani, E. Yates, A. J. Keeling, M. Mon-Williams & M. Manogue, “Feedback and motor skill acquisition using a haptic dental simulator,” Eur J Dent Educ, vol. 21, no. 4, pp. 240–247, 2017. https://doi.org/10.1111/eje.12214

[296] A. J. Robinson, G. Miller & N. Rukin, “Simulation in urological training: Where are we in 2017?,” J Clin Urol, vol. 10, no. 6 548–556, 2017. https://doi.org/10.1177/2051415817722933

[297] C. Schott, “Virtual fieldtrips and climate change education for tourism students,” JoHLSTE, vol. 21, Part. A, pp. 13–22, 2017. https://doi.org/10.1016/j.jhlste.2017.05.002

[298] A. K. Dubin, R. Smith, D. Julian, A. Tanaka & P. Mattingly, “A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Vs. Objective Assessment Tools,” J Minim Invasive Gynecol, vol. 24, no. 7, pp. 1184–1189, 2017. https://doi.org/10.1016/j.jmig.2017.07.019

[299] R. Caskey, L. Owei, R. Rao, E. W. Riddle, A. Brooks, D. Dempsey, J. B. Morris, C. J. Neylan, N. Williams & K. Dumon, “Integration of Hands-On Team Training into Existing Curriculum Improves Both Technical and Nontechnical Skills in Laparoscopic Cholecystectomy,” JSE, vol. 74, no. 6, pp. 915–920, 2017. https://doi.org/10.1016/j.jsurg.2017.05.007

[300] D. F. Pepley, A. B. Gordon, M. A. Yovanoff, K. A. Mirkin, S. R. Miller, D. C. Han & J. Z. Moore, “Training Surgical Residents With a Haptic Robotic Central Venous Catheterization Simulator,” JSE, vol. 74, no. 6, pp. 1066–1073, 2017. https://doi.org/10.1016/j.jsurg.2017.06.003

[301] M. Alam, M. S. Wilson, B. Tang, I. S. Tait & A. Alijani, “A training tool to assess laparoscopic image navigation task performance in novice camera assistants,” J Surg Res, vol. 219, pp. 232–237, 2017. https://doi.org/10.1016/j.jss.2017.05.096

[302] C. Purcell & A. R. Romijn, “Appropriateness of different pedagogical approaches to road safety education for children with Developmental Coordination Disorder (DCD),” Res Dev Disabil, vol. 70, pp. 85–93, 2017. https://doi.org/10.1016/j.ridd.2017.08.010

[303] N. E. Cagiltay, E. Ozcelik, G. Sengul & M. Berker, “Construct and face validity of the educational computer-based environment (ECE) assessment scenarios for basic endoneurosurgery skills,” Surg Endosc, vol. 31, no. 2, pp. 4485–4495, 2017. https://doi.org/10.1007/s00464-017-5502-4

[304] S. Fox, “Mass imagineering: “Combining human imagination and automated engineering from early education to digital afterlife,” Technol Soc, vol. 51–, 2017. https://doi.org/10.1016/j.techsoc.2017.09.001

[305] X. Zhang & S. Liu, “SPH haptic interaction with multiple-fluid simulation,” VR, vol. 21, pp. 165–175, 2017. https://doi.org/10.1007/s10055-017-0308-1

[306] G. Leroux, J. Monteil & P. Huguet, “Apprentissages scolaires et technologies numériques : une revue critique des méta-analyses,” L’Année psychologique, vol. 117, no. 4, pp. 433–465, 2017. https://doi.org/10.4074/S0003503317004018

[307] S. Perry, M. Burrow, W. K. Leung & S. Bridges, “Simulation and Curriculum Design: A Global Survey in Dental Education,” Aust Dent J, vol. 62, no. 4, pp. 453–463, 2017. https://doi.org/10.1111/adj.12522

[308] A. H. Lee, C. Kelley, C. Alfes, L. K. Bennington & M. Dolansky, “High-Fidelity Patient Simulation to Evaluate Student Nurse Patient Safety Competency,” Clin Simul Nurs, vol. 13, no. 12, pp. 628–633, 2017. https://doi.org/10.1016/j.ecns.2017.08.006

[309] A. S. Wilson, J. O’Connor, L. Taylor & D. M. Carruthers, “A 3D virtual reality ophthalmoscopy trainer,” Clin Teach, vol. 14, no. 6, pp. 427–431, 2017. https://doi.org/10.1111/tct.12646

[310] L. M. Goldthwaite & K. Tocce, “Simulation training for family planning procedures,” Curr Opin Obstet Gynecol, vol. 29, no. 6, pp. 437–442, 2017. https://doi.org/10.1097/GCO.0000000000000413

[311] O. Turgay, “The Meaning of Studio Practice Over Shadowed by Technology in Design Process,” Eurasia J Math Sci Tech Ed, vol. 13, no. 12, pp. 7659–7670, 2017. https://doi.org/10.12973/ejmste/80322

[312] A. Dan & M. Reiner, “EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays,” Int J Psychophysiol, vol. 122, pp. 75–84, 2017. https://doi.org/10.1016/j.ijpsycho.2016.08.013

[313] S. Perry, S. Bridges, F. Zhu, W. K. Leung, M. Burrow, J. Poolton & R. Masters, “Getting to the Root of Fine Motor Skill Performance in Dentistry: Brain Activity During Dental Tasks in a Virtual Reality Haptic Simulation (Preprint),” J Med Internet Res, vol. 19, no. 12, pp.1–10, 2017. https://doi.org/10.2196/preprints.8046

[314] P. Khadsiri, E. Tharavichitkul, S. Saekho & N. Chawapun, “Development of 3D biological effective dose distribution software program,” J Radiother Pract, vol. 16, no. 4, pp. 1–8, 2016. https://doi.org/10.1017/S1460396916000339

[315] W. Ye, S. Liu & F. Song, “History and Current State of Virtual Reality Technology and Its Application in Language Education,” J Technol Chin Lang Teach, vol. 8, no. 2, pp. 70–100, 2017. http://www.tclt.us/journal/2017v8n2/yeliusong.pdf

[316] J. Kørup, L. Dyre, M. Enggaard, L. A. Andreasen & M. Tolsgaard, “Collecting Validity Evidence for Simulation-Based Assessment of Point-of-Care Ultrasound Skills,” J Med Ultrasound, vol. 36, no. 12, pp.2475–2483, 2017. https://doi.org/10.1002/jum.14292

[317] B. J. Unger, N. Sepehri, V. Rampersad, J. Pisa, M. Gousseau & J. B. Hochman, “Elements of virtual temporal bone surgery: Manipulandum format may be more important to surgeons than haptic device force capabilities,” LIO, vol. 2, no. 6, pp. 358–362, 2017. https://doi.org/10.1002/lio2.120

[318] W. Nowinski, “Computational and mathematical methods in brain atlasing,” Neuroradiol J, vol. 30, no. 6, pp. 520–534, 2017. https://doi.org/10.1177/1971400917740362

[319] K. Li, M. Hall, P. Bermell-Garcia, J. Alcock, A. Tiwari & M. Gonzalez-Franco, “Measuring the Learning Effectiveness of Serious Gaming for Training of Complex Manufacturing Tasks,” S&G, vol. 48, no. 6, pp. 770–790, 2017. https://doi.org/10.1177/1046878117739929

[320] V. Lahanas, C. Loukas, K. Georgiou, H. Lababidi & D. Al-Jaroudi, “Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller,” Surg Endosc, vol. 31, no. 12, pp. 5012–5023, 2017. https://doi.org/10.1007/s00464-017-5503-3

[321] M.-E. Neveu, E. Debras, J. Niro, H. Fernandez & P. Panel, “Standardizing hysteroscopy teaching: development of a curriculum using the Delphi method,” Surg Endosc, vol. 31, no. 12, pp. 5389–5398, 2017. https://doi.org/10.1007/s00464-017-5620-z

[322] S. V. Kamenev, “Education in the digitalized world: opportunities and prospects,” Vestnik Tomsk Gos Univ, no. 425, pp. 85–90, 2017. https://doi.org/10.17223/15617793/425/11

[323] E. Yılmaz, A. Soyder, M. Aksu, A. Doğan, S. Boylu, A. Edizsoy, S. Ballı & M. Tekindal, “Contribution of an educational video to surgical education in laparoscopic appendectomy,” Turk J Surg, vol. 33, no. 4, pp. 237–242, 2017. https://doi.org/10.5152/turkjsurg.2017.3610

[324] P. Ciechanski, A. Cheng, S, Lopushinsky, K. Hecker, L. Shi Gan, S. Lang, K. Zareinia & A. Kirton, “Effects of Transcranial Direct-Current Stimulation on Neurosurgical Skill Acquisition: A Randomized Controlled Trial,” World Neurosurg, vol. 108, pp. 876–884, 2017. https://doi.org/10.1016/j.wneu.2017.08.123

[325] A. Borrel & D. Fourches, “RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality,” Bioinformatics, vol. 33, no. 23, pp. 3816–3818, 2017. https://doi.org/10.1093/bioinformatics/btx485

[326] R. Bartlett, D. Radenkovic, S. Mitrasinovic, A. Cole, I. Pavković, P. Phey, P. Denn, M. Hussain, M. Kogler, N. Koutsopodioti, W. Uddin, I. Beckley, H. Abubakar, D. Gill & D. Smith, “A pilot study to assess the utility of a freely downloadable mobile application simulator for undergraduate clinical skills training: A single-blinded, randomised controlled trial,” BMC Med Educ, vol. 17 , pp. 1–9, 2017. https://doi.org/10.1186/s12909-017-1085-y

[327] H.-B. Kwon, Y.-S. Park & J.-S. Han, “Augmented reality in dentistry: a current perspective,” Acta Odontol Scand, vol. 76, pp. 1–7, 2018. https://doi.org/10.1080/00016357.2018.1441437

[328] K. Sugand, R. Wescott, R. Carrington, A. Hart & B. Van Duren, “Teaching basic trauma: validating FluoroSim, a digital fluoroscopic simulator for guide-wire insertion in hip surgery,” Acta Orthop, vol. 89, pp. 1–6, 2018. https://doi.org/10.1080/17453674.2018.1466233

[329] T.-K. Wang, J. Huang, P.-Ch. Liao & Y. Piao, “Does Augmented Reality Effectively Foster Visual Learning Process in Construction? An Eye-Tracking Study in Steel Installation,” Adv Civ Eng, Special Issue, pp. 1–12, 2018. https://doi.org/10.1155/2018/2472167

[330] C. Y. Huang, J. B. Thomas, A. Alismail, A. Cohen, W. A. Almutairi, N. S. Daher, M. H. Terry & L. D. Tan, “The use of augmented reality glasses in central line simulation: “see one, simulate many, do one competently, and teach everyone,” Adv Med Educ And Pract, vol. 9, pp. 357–363, 2018. https://doi.org/10.2147/AMEP.S160704

[331] V. Mitrousias, S. E. Varitimidis, M. E. Hantes, K. N. Malizos, D. L. Arvanitis & A. H. Zibis, “Anatomy learning from prosected cadaveric specimens versus three-dimensional software: A comparative study of upper limb anatomy,” Ann Anat, vol. 218, pp. 156–164, 2018. https://doi.org/10.1016/j.aanat.2018.02.015

[332] N. Kushzhanov, B. Almurzayeva, O. Shunkeeva, S. Seitenova, D. Summers & B. Summers., “The digital transformation of an education system. The virtual reality as new educational space,” Bulletin of the NAS RK, vol. 3, no. 373, pp. 152–158, 2018. http://nblib.library.kz/elib/library.kz/jurnal/%D0%92%D0%B5%D1%81%D1%82%D0%BD%D0%B8%D0%BA_03_2018/Kushzhanov%20(str.152)%20032018.pdf

[333] A. S. Ferreira, F. A. de Lima, J. de Menezes, J. Moreira & F. R. Freitas, “Percepções, concepções e avaliações de licenciandos em ciências quanto ao funcionamento do facebook como ambiente virtual de aprendizagem,” BRAJETS, vol. 11, no. 3, pp. 427–443, 2018. https://doi.org/10.14571/brajets.v11.n3.427-443

[334] D. S. Ng, Z. Sun, A. Young, S. T. Ko, J. K. Lok, T. Y. Lai, S. Sikder & C. C. Tham, “Impact of virtual reality simulation on learning barriers of phacoemulsification perceived by residents,” Clinical ophthalmol, vol. 12, pp. 885–893, 2018. https://doi.org/10.2147/OPTH.S140411

[335] R. Khan, J. Plahouras, B. C. Johnston, M. A .Scaffidi, S. C. Grover & C. M. Walsh, “Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy,” Cochrane Database Syst Rev, vol. 8, no. 8–, 2018. https://doi.org/10.1002/14651858.CD008237.pub3

[336] F. Ozdamli & D. Karagözlü, “Preschool Teachers’ Opinions on the Use of Augmented Reality Application in Preschool Science Education,” CJE, vol. 20, no. 1, pp. 43–74, 2018. https://doi.org/10.15516/cje.v20i1.2626

[337] T. M. Walsh, “The Role of Simulation to Train Gynecology Residents in Minimally Invasive Surgery,” Curr Womens Health Rev, vol. 14, no. 111–17, 2018. https://doi.org/10.2174/1573404813666170223170458

[338] Á. Vieira, C. A. Melo, J. P. Machado & J. Gabriel, “Virtual reality exercise on a home-based phase III cardiac rehabilitation program, effect on executive function, quality of life and depression, anxiety and stress: a randomized controlled trial,” Disabil Rehabil.: Assist Technol, vol. 13, no. 2, pp. 112–123, 2018. https://doi.org/10.1080/17483107.2017.1297858

[339] I. Aznar, J. Romero & A. M. Rodríguez-García, “La tecnología móvil de Realidad Virtual en educación: una revisión del estado de la literatura científica en España,” Edmetic, vol. 7, no. 1, pp. 256–274, 2018. https://doi.org/10.21071/edmetic.v7i1.10139

[340] C. Carbonell-Carrera & J. L. Saorín, “Virtual Learning Environments to Enhance Spatial Orientation,” Eurasia J Math Sci Tech Ed, vol. 14, no. 3, pp. 709–719, 2017. https://doi.org/10.12973/ejmste/79171

[341] A. R. Maisonneuve, H. O. Witteman, J. Brehaut, È. Dubé & K. Wilson, “Educating children and adolescents about vaccines: a review of current literature,” Expert Rev Vaccines, vol. 17, no. 4, pp. 311–321, 2018. https://doi.org/10.1080/14760584.2018.1456921

[342] A. Alam, S. Ullah & N. Ali, “The Effect of Learning Based Adaptivity on Students’ Performance in 3D-Virtual Learning Environments,” IEEE Access, vol. 6, pp. 3400–3407, 2017. https://doi.org/10.1109/ACCESS.2017.2783951

[343] S. Nam & J. Y. Kim, “Dance Exergame System for Health Using Wearable Devices,” IEEE Access, vol. 6, pp. 48224–48230, 2018. https://doi.org/10.1109/access.2018.2866944

[344] M. Kurki, M. Anttila, M. H. Koivunen, M. Marttunen & M. A. Välimäki, “Nurses’ experiences of the use of an Internet-based support system for adolescents with depressive disorders,” Inform Health Soc Care, vol. 43, no. 3, pp. 234–247, 2018. https://doi.org/10.1080/17538157.2016.1269110

[345] J. Arenas-Gaitán, F. J. Rondán-Cataluña & P. E. Ramírez-Correa, “Modelling the success of learning management systems: application of latent class segmentation using FIMIX-PLS,” Interact Learn Envir, vol. 26, no. 1, pp. 135–147, 2018. https://doi.org/10.1080/10494820.2017.1283335

[346] T. Gunn, L. Jones, P. Bridge, P. Rowntree & L. Nissen, “The use of virtual reality simulation to improve technical skill in the undergraduate medical imaging student,” Interact Learn Envir, vol. 26, no. 4, pp. 613–620, 2018. https://doi.org/10.1080/10494820.2017.1374981

[347] F. Wang, “Computer Distance Virtual Experiment Teaching Application Based on Virtual Reality Technology,” iJET, vol. 13, no. 83 , pp. 83–94, 2018. https://doi.org/10.3991/ijet.v13i04.8472

[348] H. Ch. Pham, N.-N. Dao, A. Pedro, Q. T. Le, R. Hussain, S. Cho & Ch. Park, “Virtual Field Trip for Mobile Construction Safety Education Using 360-Degree Panoramic Virtual Reality,” IJEE, vol. 34, no. 4, pp. 1174–1191, 2018. https://www.ijee.ie/latestissues/Vol34-4/05_ijee3626.pdf

[349] A. S. Yoones & Z. Hossein, “Sense of Immersion in Computer Games Using Single and Stereoscopic Augmented Reality,” Int J Human Computer Interact, vol. 34, no. 2, pp. 187–194, 2018. https://doi.org/10.1080/10447318.2017.1340229

[350] Q. Ye, W. Hu, H. Zhou, Z. Lei & S. Guan, “VR Interactive Feature of HTML5-based WebVR Control Laboratory by Using Head-mounted Display,” iJOE, vol. 14, pp. 20–33, 2018. https://doi.org/10.3991/ijoe.v14i03.8112

[351] F. Dinis, B. Rangel, J. Martins & A. Guimarães, “Disseminating Civil Engineering through Virtual Reality: An Immersive Interface,” iJOE, vol. 14, no. 3, pp. 225–232, 2018. https://doi.org/10.3991/ijoe.v14i05.7788

[352] Y. Yang, “The innovation of college physical training based on computer virtual reality technology,” J Discret Math Sci Cryptogr, vol. 21, no. 6, pp. 1275–1280, 2018. https://doi.org/10.1080/09720529.2018.1526400

[353] R. Bradley & N. Newbutt, “Autism and virtual reality head-mounted displays: a state of the art systematic review,” JET, vol. 12. no. 3, pp. 101–113, 2018. https://doi.org/10.1108/JET-01-2018-0004

[354] M. Gómez, J. M. Torres, I. Aznar-Díaz& M. P. Cáceres-Reche, “Augment reality and virtual reality for the improvement of spatial competences in Physical Education ,” J Hum Sport Exerc, vol. 13, Proc. 2, pp. S189–S198, 2018. https://doi.org/10.14198/jhse.2018.13.Proc2.03

[355] A.-H. Isam, M. Masood & H. Al-Samarraie, “Fostering Student Nurses’ Self-Regulated Learning with the Second Life Environment: An Empirical Study,” JITE, vol. 17, pp. 285–307, 2018. https://doi.org/10.28945/4110

[356] J. D. Lucas, “Immersive VR in the construction classroom to increase student understanding of sequence, assembly, and space of wood frame construction,” ITcon, vol. 23, pp. 179–194, 2018. Available: https://www.itcon.org/papers/2018_09-ITcon-Lucas.pdf

[357] S. Hewawalpita, S. Herath, I. Perera & D. Meedeniya, “Effective learning content offering in MOOCs with virtual reality – An exploratory study on learner experience,” J UCS, vol. 24, no. 2, pp. 129–148, 2018. https://doi.org/10.3217/jucs-024-02-0129

[358] S. W. Greenwald, W. Corning, M. Funk & P. Maes, “Comparing learning in virtual reality with learning on a 2D screen using electrostatics activities,” J UCS, vol. 24, pp. 220–245, 2018. https://doi.org/10.3217/jucs-024-02-0220

[359] L. Collado-Yurrita, M. J. Ciudad-Cabañas & M. A. Cuadrado-Cenzual, “Evolution of medical education in the Department of Medicine of the Complutense University of Madrid in the last decade,” Med Teach, vol. 40, no. 5, pp. 449–452, 2018. https://doi.org/10.1080/0142159X.2018.1441987

[360] F. Bjerrum, A. S. Skou, L. J. Nayahangan & L. Konge, “Surgical simulation: Current practices and future perspectives for technical skills training,” Med Teach, vol. 40, no. 7, pp. 668–675, 2018. https://doi.org/10.1080/0142159X.2018.1472754

[361] K. Choi, Y. Yoon, O. Song & S. Choi, “Interactive and Immersive Learning Using 360° Virtual Reality Contents on Mobile Platforms,” Mob Inf Syst, no. 3, pp. 2306031:1–2306031:12, 2018. https://doi.org/10.1155/2018/2306031

[362] M. K. Jin, H. J. Yun & H. S. Lee, “Design of Evaluation Areas Based on Type of Mobile-Based Virtual Reality Training Conten,” Mob Inf Syst, no. 4, pp. 1–9, 2018. https://doi.org/10.1155/2018/2489149

[363] H. Kim, H. Shin, H.-s. Kim & W.-T. Kim, “VR-CPES: A Novel Cyber-Physical Education Systems for Interactive VR Services Based on a Mobile Platform,” Mob Inf Syst, no. 1, pp. 1–10, 2018. https://doi.org/10.1155/2018/8941241

[364] J. M. Soto, A. Egea & L. Arias, “Evaluación de un videojuego educativo de contenido histórico. La opinión de los estudiantes,” Relatec, vol. 17, pp. 61–75, 2018. https://doi.org/10.17398/1695-288X.17.1.61

[365] G. Coelho, L. B. Adami & N. Zanon, “O papel da simulação na prática cirúrgica e a criação de uma nova ferramenta para treinamento neurocirúrgico,” Sci Med, vol. 28, no. 1, pp. 1–8, 2018. https://doi.org/10.15448/1980-6108.2018.1.29129

[366] G. Coelho & T. Vieira, “História da simulação cirúrgica e sua aplicação em Neurocirurgia,” Sci Med, vol. 28, no. 1, pp. 1–7, 2018. https://doi.org/10.15448/1980-6108.2018.1.29688

[367] N. Tsankov, V. Gyuviyska & M. Levunlieva,, “Blended Education in Higher Schools: New Networks and Mediators,” Стратегии, vol. 26, no. 3, pp. 231–245, 2018. Available: https://elibrary.ru/item.asp?id=37346214

[368] R. Andreoli, A. Corolla, A. Faggiano, D. Malandrino, D. Pirozzi, M. Ranaldi, G. Santangelo & V. Scarano, “A Framework to Design, Develop, and Evaluate Immersive and Collaborative Serious Games in Cultural Heritage,” Jocch, vol. 11, no. 1, pp. 4:1–4:22, 2017. https://doi.org/10.1145/3064644

[369] J. A. Shiomi, A. F. Miranda, L. Evangelista, R. Ulysses, S. T. dos Reis, M. Srougi & C. Camargo, “Assessment of a new kind of surgical simulator. The physical surgical simulator,” Acta Cira Bras, vol. 33, pp. 86–94, 2018. https://doi.org/10.1590/s0102-865020180010000009

[370] C. M. Harrington, D. O. Kavanagh, J. F. Quinlan, D. Ryan, L. Gallagher, D. A. O’Keeffe, O. J. Traynor & S. M. Tierney, “Development and evaluation of a trauma decision-making simulator in Oculus virtual reality,” Am J Surg, vol. 215, no. 1, pp. 42–47, 2018. https://doi.org/10.1016/j.amjsurg.2017.02.011

[371] M. S. Yin, P. Haddawy, S. Suebnukarn & P. Rhienmora, “Automated outcome scoring in a virtual reality simulator for endodontic surgery,” Comput Methods Programs Biomed, vol. 153, pp. 53–59, 2018. https://doi.org/10.1016/j.cmpb.2017.10.001

[372] A. Ruiz-Ariza, R. A. Casuso, S. Suarez-Manzano & E. J. Martínez-López, “Effect of augmented reality game Pokémon GO on cognitive performance and emotional intelligence in adolescent young,” Comput Educ, vol. 116, pp. 49–63, 2018. https://doi.org/j.compedu.2017.09.002

[373] D. Bhattacharjee, A. Paul, J. H. Kim & P. Karthigaikumar, “An immersive learning model using evolutionary learning,” Comput Electr Eng, vol. 65, pp. 236–249, 2017. https://doi.org/j.compeleceng.2017.08.023

[374] K. Gu, V. Jakhetiya, J. Qiao, X. Li, W. Lin & D. Thalmann, “Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description,” IEEE Trans Image Process, vol. 27, no. 1, pp. 394–405, 2018. https://doi.org/ 10.1109/TIP.2017.2733164

[375] F. Schmitt, A. Mariani, E. Eyssartier, J. Granry & G. Podevin, “Learning Laparoscopic Skills: Observation or Practice?,” J Laparoendosc Adv S, vol. 28, no. 1, pp. 89–94, 2018. https://doi.org/10.1089/lap.2017.0254

[376] M. LeBel, J. P. Haverstock, S. M. Cristancho, L. V. Eimeren & G. Buckingham, “Observational Learning During Simulation-Based Training in Arthroscopy: Is It Useful to Novices?,” JSE, vol. 75, no. 1, pp. 222–230, 2017. https://doi.org/ 10.1016/j.jsurg.2017.06.005

[377] C. Pramuk, “Contemplation and the Suffering Earth: Thomas Merton, Pope Francis, and the Next Generation,” Open Theology, vol. 4, pp. 212–227, 2018. https://doi.org/10.1515/opth-2018-0015

[378] C. Hsu, “Tourism education on and beyond the horizon,” Tour Manag Perspect, vol. 25, pp. 181–183, 2017. https://doi.org/10.1016/j.tmp.2017.11.022

[379] J. Hoogenes, N. C. Wong, B. Al-Harbi, K. S. Kim, S. Vij, E. Bolognone, M. A. Quantz, Y. Guo, B. Shayegan & E. D. Matsumoto, “A Randomized Comparison of 2 Robotic Virtual Reality Simulators and Evaluation of Trainees’ Skills Transfer to a Simulated Robotic Urethrovesical Anastomosis Task,” Urology, vol. 111, pp. 110–115, 2018. https://doi.org/10.1016/j.urology.2017.09.023

[380] L. Kobayashi, X. C. Zhang, S. Collins, N. Karim & D. L. Merck, “Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training,” Western J Emerg Med, vol. 19, no. 1, pp. 158–164, 2018. https://doi.org/10.5811/westjem.2017.10.35026

[381] G. Erturan, A. Alvand, A. Judge, T. Pollard, S. Glyn-Jones & J. Rees, “Prior generic arthroscopic volume correlates with hip arthroscopic proficiency: a simulator study,” J Bone Joint Surg Am, vol. 100, no. 1, pp. 1–19, 2017. https://doi.org/10.2106/JBJS.17.00352

[382] Z.-W. Wang, Y.-G. Yu & F.-Z. Yang, “Panoramic video display quality assessment based on HTC Vive,” CJLCD, vol. 33, pp. 85–91, 2018. https://doi.org/10.3788/YJYXS20183301.0085

[383] Z. Huang, W. Song, Y. Zhang, Q. Zhang, D. Zhou, X. Zhou & Y. He, “Three-dimensional printing model improves morphological understanding in acetabular fracture learning: A multicenter, randomized, controlled study,” PloS one, vol. 13, no. 1, pp. 1–12, 2018. https://doi.org/10.1371/journal.pone.0191328

[384] J. L. McGrath, J. M. Taekman, P. Dev, D. R. Danforth, D. Mohan, N. E. Kman, A. Crichlow & W. F. Bond, “Using Virtual Reality Simulation Environments to Assess Competence for Emergency Medicine Learners,” AEM, vol. 25, no. 2, pp. 186–195, 2018. https://doi.org/10.1111/acem.13308

[385] E. D. Rosenman, A. J. Dixon, J. M. Webb, S. M. Brolliar, S. J. Golden, K. A. Jones, S. P. Shah, J. A. Grand, S. W. Kozlowski, G. T. Chao & R. Fernandez, “A Simulation-based Approach to Measuring Team Situational Awareness in Emergency Medicine: A Multicenter, Observational Study,” AEM, vol. 25, no. 2, pp. 196–204, 2018. https://doi.org/10.1111/acem.13257

[386] S. Ali, M. Qandeel, R. Ramakrishna & C.W. Yang, “Virtual Simulation in Enhancing Procedural Training for Fluoroscopy-guided Lumbar Puncture: A Pilot Study,” Acad Radiol, vol. 25, no. 2, pp. 235–239, 2017. https://doi.org/10.1016/j.acra.2017.08.002

[387] X. Li, W. Yi, H.-L. Chi, X. Wang & A. Chan, “A Critical Review of Virtual and Augmented Reality (VR/AR) Application in Construction Safety,” Autom Constr, vol. 86, pp.150–162, 2017. https://doi.org/10.1016/j.autcon.2017.11.003

[388] R. R. Wright, E. A. Tinnon & R.H. Newton, “Evaluation of vSim for Nursing in an Adult Health Nursing Course: A Multisite Pilot Study,” CIN, vol. 36, no. 2, pp. 84–89, 2017. https://doi.org/10.1097/CIN.0000000000000388

[389] E. Günay & A. Zaybak, “Comparison of the Effectiveness of a Virtual Simulator With a Plastic Arm Model in Teaching Intravenous Catheter Insertion Skills,” CIN, vol. 36, no. 2, pp. 98–105, 2018. https://doi.org/10.1097/CIN.0000000000000405

[390] M. Aebersold, T. Voepel-Lewis, L. Cherara, M. Weber, C. Khouri, R. Levine & A. R. Tait, “Interactive Anatomy-Augmented Virtual Simulation Training,” Clin Simul Nurs, vol. 15, pp. 34–41, 2018. https://doi.org/10.1016/j.ecns.2017.09.008

[391] A. Frithioff, M.S. Sørensen & S. A. Andersen, “European status on temporal bone training: a questionnaire study,” Eur Arch Otorhinolaryngol, vol. 275, no. 2, pp. 357–363, 2017. https://doi.org/10.1007/s00405-017-4824-0

[392] I. A. Mirghani, F. Mushtaq, M. J. Allsop, L. M. Al-Saud, N. Tickhill, C. Potter, A.J. Keeling, M. Mon-Williams & M. Manogue, “Capturing differences in dental training using a virtual reality simulator,” Eur J Dent Educ, vol. 22, no. 1, pp. 67–71, 2018. https://doi.org/10.1111/eje.12245

[393] F. Buttussi & L. Chittaro, “Effects of Different Types of Virtual Reality Display on Presence and Learning in a Safety Training Scenario,” IEEE T Vis Comput Gr, vol. 24, no. 2, pp. 1063–1076, 2018. https://doi.org/10.1109/TVCG.2017.2653117

[394] M. Cowling & J. Birt, “Pedagogy before Technology: A Design-Based Research Approach to Enhancing Skills Development in Paramedic Science Using Mixed Reality,” Information, vol. 9, no. 2, pp. 1–15, 2018. https://doi.org/10.3390/info9020029

[395] J. Birt, Z. Stromberga, M.A. Cowling & C. Moro, “Mobile Mixed Reality for Experiential Learning and Simulation in Medical and Health Sciences Education,” Information, vol. 9, no. 2, pp. 1–14, 2018. https://doi.org/10.3390/info9020031

[396] T. Huber, T. Wunderling, M. Paschold, H. Lang, W. Kneist, C. & Hansen, “Highly immersive virtual reality laparoscopy simulation: development and future aspects,” Int J Comput Assist Radiol Surg, vol. 13, no. 2, pp. 281–290, 2017. https://doi.org/10.1007/s11548-017-1686-2

[397] J. Cecil, A. Gupta & M. Pirela-Cruz, “An advanced simulator for orthopedic surgical training,” Int J Comput Assist Radiol Surg, vol. 13, no. 2, pp. 305–319, 2017. https://doi.org/10.1007/s11548-017-1688-0

[398] N. A. González, “Development of spatial skills with virtual reality and augmented reality,” IJIDeM, vol. 12, pp. 133–144, 2018. https://doi.org/10.1007/s12008-017-0388-x

[399] D. Julian, A. Tanaka, P. J. Mattingly, M. D. Truong, M. Perez & R. S. Smith, “A comparative analysis and guide to virtual reality robotic surgical simulators,” MRCAS, vol. 14, no. 1–, 2018. https://doi.org/10.1002/rcs.1874

[400] Y. Li, X. Lu, C. Yu, H. Guo & D. Zhang, “Research and application of the virtual simulation system teaching method in NC machining course,” Int J Model Simul Sci Compu, vol. 9, no. 1, pp. 1–17, 2017. https://doi.org/10.1142/S1793962318500071

[401] H.-M. Huang & S.-S. Liaw, “An Analysis of Learners’ Intentions toward Virtual Reality Learning Based on Constructivist and Technology Acceptance Approaches,” IRRODL, vol. 19, no. 1, pp. 91–115, 2018. https://doi.org/10.19173/irrodl.v19i1.2503

[402] C. Karmonik, T. B. Boone & R. Khavari, “Workflow for Visualization of Neuroimaging Data with an Augmented Reality Device,” JDI, vol. 31, no. 1, pp. 26–31, 2018. https://doi.org/10.1007/s10278-017-9991-4

[403] Y. A. Noureldin, J. Y. Lee, E. M. McDougall & R. M. Sweet, “Competency-Based Training and Simulation: Making a “Valid” Argument,” J Endourol, vol. 32, no. 2, pp. 84–93, 2018. https://doi.org/10.1089/end.2017.0650

[404] H. El Kabtane, M. Adnani, M. Sadgal & Y. Mourdi, “Toward an occluded augmented reality framework in E-learning platforms for practical activities,” J Eng Sci Technol Rev, vol. 13, no. 2, pp. 394–408, 2018. Available: http://jestec.taylors.edu.my/Vol%2013%20issue%202%20February%202018/13_2_9.pdf

[405] M. Chan & S. Carrie, “Training and assessment in functional endoscopic sinus surgery,” JLO, vol. 132, no. 2, pp. 1–5, 2018. https://doi.org/10.1017/S0022215117002183

[406] A. A. Lewinski, R. A. Anderson, A. A. Vorderstrasse, E. B. Fisher, W. Pan & C. M. Johnson, “Type 2 Diabetes Education and Support in a Virtual Environment: A Secondary Analysis of Synchronously Exchanged Social Interaction and Support,” J Med Internet Res, vol. 20, no. 2, pp. e61–e61, 2018. https://doi.org/10.2196/jmir.9390

[407] A. M. Cassar, G. S. Denyer, H. T. O’Connor & J. A. Gifford, “A Qualitative Investigation to Underpin the Development of an Electronic Tool to Assess Nutrition Literacy in Australian Adults,” Nutrients, vol. 10, no. 2, pp. 1–16, 2018. https://doi.org/10.3390/nu10020251

[408] L. Chittaro, C. McLean, G. A. McLean & N. Zangrando, “Safety knowledge transfer through mobile virtual reality: A study of aviation life preserver donning,” Saf Sci, vol. 102, pp. 159–168, 2018. https://doi.org/10.1016/j.ssci.2017.10.012

[409] P. Staropoli, N. Z. Gregori, A. K. Junk, A. Galor, R. Goldhardt, B. E. Goldhagen, W. Shi & W. F. Feuer, “Surgical Simulation Training Reduces Intraoperative Cataract Surgery Complications Among Residents,” Simul Healthc, vol. 13, no. 1, pp. 11–15, 2017. https://doi.org/10.1097/SIH.0000000000000255

[410] W. Liu, X. Zheng, R. Wu, Y. Jin, S. Kong, J. Li, J. Lu, H. Yang, X. Xu, Y. Lv & X. Zhang, “Novel laparoscopic training system with continuously perfused ex-vivo porcine liver for hepatobiliary surgery,” Surg Endosc, vol. 32, no. 2, pp. 743–750, 2017. https://doi.org/10.1007/s00464-017-5731-6

[411] T. Mazur, T. R. Mansour, L. Mugge & A. Medhkour, “Virtual Reality-Based Simulators for Cranial Tumor Surgery: A Systematic Review,” World Neurosurg, vol. 110, pp. 414–422, 2018. https://doi.org/10.1016/j.wneu.2017.11.132

[412] C. Fertleman, P. Aubugeau-Williams, C. Sher, A.-N. Lim, S. Lumley, S. Delacroix & X. Pan, “A Discussion of Virtual Reality As a New Tool for Training Healthcare Professionals,” Front Public Health, vol. 6, no. 44, pp. 1–5, 2018. https://doi.org/10.3389/fpubh.2018.00044

[413] N. J. Formosa, B. W. Morrison, G. Hill & D. Stone, “Testing the efficacy of a virtual reality-based simulation in enhancing users’ knowledge, attitudes, and empathy relating to psychosis,” Aust J Psychol, vol. 70, no. 1, pp. 57–65, 2018. https://doi.org/10.1111/ajpy.12167

[414] A. L. Butt, S. Kardong-Edgren & A. Ellertson , “Using Game-Based Virtual Reality with Haptics for Skill Acquisition,” Clin Simul Nurs, vol. 16, pp. 25–32, 2018. https://doi.org/10.1016/j.ecns.2017.09.010

[415] D. Murgu, Septimiu & S Kurman, Jonathan & Hasan, Omar, “Bronchoscopy Education: An Experiential Learning Theory Perspective,” Clin Chest Med, vol. 39, no. 1, pp. 99–110, 2018. https://doi.org/10.1016/j.ccm.2017.11.002

[416] T. H. Laine, “Mobile Educational Augmented Reality Games: A Systematic Literature Review and Two Case Studies,” Computers, vol. 7, no. 1, pp. 1–28, 2018. https://doi.org/10.3390/computers7010019

[417] K. Katzis, C. Dimopoulos, M. Meletiou-Mavrotheris & I.-E. Lasica, “Engineering Attractiveness in the European Educational Environment: Can Distance Education Approaches Make a Difference?,” J Educ Sci, vol. 8, no. 1, pp. 1–21, 2018. https://doi.org/10.3390/educsci8010016

[418] J. Durl, T. Dietrich, B. Pang, L.-E. Potter & L. Carter, “Utilising virtual reality in alcohol studies: A systematic review,” Health Educ J, vol. 7, no. 2, pp. 212–225, 2017. https://doi.org/10.1177/0017896917743534

[419] F. Schmitt, A. Mariani, E. Eyssartier, J. C. Granry & G. Podevin, “Skills improvement after observation or direct practice of a simulated laparoscopic intervention,” J Gynecol Obstet Hum Reprod, vol. 47, no. 3, pp. 101–106, 2017. https://doi.org/10.1016/j.jogoh.2017.12.004

[420] S. N. Wijewickrema, Y. Zhou, I. Ioannou, B. Copson, P. Piromchai, C. Yu, R. Briggs, J. Bailey, G. E. Kennedy & S. J. O’Leary, “Presentation of automated procedural guidance in surgical simulation: results of two randomised controlled trials,” JLO, vol. 132, no. 3, pp. 257–263, 2018. https://doi.org/10.1017/S0022215117002626

[421] C. Chamunyonga, J. Burbery, P. Caldwell, P. Rutledge, A. Fielding & S. Crowe, “Utilising the Virtual Environment for Radiotherapy Training System to Support Undergraduate Teaching of IMRT, VMAT, DCAT Treatment Planning, and QA Concepts,” JMIRS, vol. 49, no. 1, pp. 31–38, 2018. https://doi.org/10.1016/j.jmir.2017.11.002

[422] J. K. Ko, V. Y. Cheung, T. C. Pun & W. K. Tung, “A Randomized Controlled Trial Comparing Trainee-Directed Virtual Reality Simulation Training and Box Trainer on the Acquisition of Laparoscopic Suturing Skills,” JOGC, vol. 40, no. 3, pp. 310–316, 2017. https://doi.org/10.1016/j.jogc.2017.07.010

[423] P. C. Romero, P. Guenther, K. Kowalewski, M. Friedrich, M. W. Schmidt, S. M. Trent, J. R. Garza, B. P. Müller-Stich & F. Nickel, “Halsted’s “See One, Do One, and Teach One” versus Peyton’s Four-Step Approach: A Randomized Trial for Training of Laparoscopic Suturing and Knot Tying,” JSE, vol. 75, no. 2, pp. 510–515, 2017. https://doi.org/10.1016/j.jsurg.2017.07.025

[424] M. Zahiri, R. Booton, C. A. Nelson, D. Oleynikov & K. C. Siu, “Virtual Reality Training System for Anytime/Anywhere Acquisition of Surgical Skills: A Pilot Study,” Mil Med, vol. 183, suppl. 1, pp. 86–91, 2018. https://doi.org/10.1093/milmed/usx138

[425] S. Farra, S. Smith & D. Ulrich, “The Student Experience With Varying Immersion Levels of Virtual Reality Simulation,” Nurs Educ Perspect, vol. 39, no. 1, pp. 99–101, 2017. https://doi.org/10.1097/01.NEP.0000000000000258

[426] D. Hashimoto, E. Petrusa, R. Phitayakorn, C. Valle, B. Casey & D. Gee, “A proficiency-based virtual reality endoscopy curriculum improves performance on the fundamentals of endoscopic surgery examination,” Surg Endosc, vol. 32, no. 1, pp. 1397–1404, 2017. https://doi.org/0.1007/s00464-017-5821-5

[427] L. Sessa, C. Perrenot, S. Xu, J. Hubert, L. Bresler, L. Brunaud & M. Pérez, “Face and content validity of Xperience™ Team Trainer: bed-side assistant training simulator for robotic surgery,” UPIS, vol. 70, no. 1, pp. 113–119, 2018. https://doi.org/10.1007/s13304-017-0509-x

[428] J. Shi, Y. Hou, Y. Lin, H. Chen & W. Yuan, “Role of Visuohaptic Surgical Training Simulator in Resident Education of Orthopedic Surgery,” World Neurosurg, vol. 111, pp. e98–e104, 2017. https://doi.org/10.1016/j.wneu.2017.12.015

[429] S. Mirza & S. Athreya, “Review of Simulation Training in Interventional Radiology,” Acad Radiol, vol. 25, no. 4, pp. 529–539, 2017. https://doi.org/10.1016/j.acra.2017.10.009

[430] S. Sharma, B. Varkey, K. Achary, J. Hakulinen, M. Turunen, T. Heimonen, S. Srivastava & N. Rajput, “Designing Gesture-Based Applications for Individuals with Developmental Disabilities: Guidelines from User Studies in India,” TACCESS, vol. 11, no. 1, pp. 3:1–3:27, 2018. https://doi.org/10.1145/3161710

[431] K. Threapleton, K. Newberry, G. Sutton, E. Worthington & A. Drummond, “Virtually home: Feasibility study and pilot randomised controlled trial of a virtual reality intervention to support patient discharge after stroke,” BJOT, vol. 81, no. 4, pp. 196–206, 2018. https://doi.org/10.1177/0308022617743459

[432] R. D. Dias, M. Ngo-Howard, M. T. Boskovski, M. A. Zenati & S. J. Yule, “Systematic review of measurement tools to assess surgeons’ intraoperative cognitive workload,” BJS, vol. 105, no. 5, pp. 491–501, 2018. https://doi.org/10.1002/bjs.10795

[433] K. Iserson, “Ethics of Virtual Reality in Medical Education and Licensure,” Camb Q Healthc Ethics, vol. 27, no. 2, pp. 326–332, 2018. https://doi.org/10.1017/SO963180117000652

[434] P. V. Paiva, L. S. Machado, A. M. Valença, T. V. Batista & R. M. Moraes, “SimCEC: A Collaborative VR-Based Simulator for Surgical Teamwork Education,” Comput Entertain, vol. 16, no. 2, pp. 3:1–3:26, 2018. https://doi.org/10.1145/3177747

[435] R. Shewaga, A. Uribe-Quevedo, B. Kapralos, K. Lee & F. Alam, “A Serious Game for Anesthesia-Based Crisis Resource Management Training,” Comput Entertain, vol. 16, no. 2, pp. 6:1–6:16, 2018. https://doi.org/10.1145/3180660

[436] C. Blyth, “Immersive technologies and language learning,” Foreign Lang Ann, vol. 51, no. 1, pp. 225–232, 2018. https://doi.org/10.1111/flan.12327

[437] A. Bhargava, J. W. Bertrand, A. K. Gramopadhye, K. C. Madathil & S. V. Babu, “Evaluating Multiple Levels of an Interaction Fidelity Continuum on Performance and Learning in Near-Field Training Simulations,” TVCG, vol. 24, no. 4, pp. 1418–1427, 2018. https://doi.org/10.1109/TVCG.2018.2794639

[438] A. Zuev & R. Bolbakov, “On Prospects of Development of Telecommunication Systems and Services based on Virtual Reality Technology,” Int J Advanced Comput Sci Appl, vol. 9, no. 4, pp. 1–5, 2018. https://doi.org/10.14569/IJACSA.2018.090401

[439] E. A. Faucett, J. Y. Barry, H. C. McCrary, A. A. Saleh, A. B. Erman & S. L. Ishman, “Otolaryngology Resident Education and the Accreditation Council for Graduate Medical Education Core Competencies: A Systematic Review,” JAMA Otolaryngol Head Neck Surg, vol. 144, no. 4, pp. 360–370, 2018. https://doi.org/10.1001/jamaoto.2017.3163

[440] A. Vahabzadeh, N. Keshav, J. Salisbury & N. Sahin, “Improvement of Attention-Deficit/Hyperactivity Disorder Symptoms in School-Aged Children, Adolescents, and Young Adults With Autism via a Digital Smartglasses-Based Socioemotional Coaching Aid: Short-Term, Uncontrolled Pilot Study ,” JMIR Mental Health, vol. 5, no. 2–, 2018. https://doi.org/10.2196/mental.9631

[441] R. M. Natajara, N. Webb & P. J. López, “Simulation in paediatric urology and surgery, part 2: An overview of simulation modalities and their applications,” J Pediatr Urol, vol. 14, no. 2, pp. 125–131, 2018. https://doi.org/10.1016/j.jpurol.2017.12.009

[442] T.-K. Huang, C.-H. Yang, Y.-H. Hsieh, J.-Ch. Wang & Ch. Hung, “Augmented reality (AR) and virtual reality (VR) applied in dentistry,” KJMS, vol. 34, pp. 243–248, 2018. https://doi.org/10.1016/j.kjms.2018.01.009

[443] A. V. Ribeiro, G. C. Godoy, L. B. Neto & M. P. de Souza-Filho, “Holography And Virtual Reality In The Teaching Of Nanotechnology: New Horizons Aimed At High School,” Momento, no. 56E, pp. 34–45, 2018. https://revistas.unal.edu.co/index.php/momento/article/view/71645/65672

[444] R. Molina-Carmona, M. L. Pertegal-Felices, A. Jimeno-Morenilla & H. Mora, “Virtual Reality Learning Activities for Multimedia Students to Enhance Spatial Ability,” Sustainability, vol. 10, no. 1074, pp. 1–13, 2018. https://doi.org/10.3390/su10041074

[445] V. Román-Ibáñez, F. A. Pujol-López, H. Mora-Mora, M. L. Pertegal-Felice & A. Jimeno-Morenilla, “A Low-Cost Immersive Virtual Reality System for Teaching Robotic,” Manipulators Programming, vol. 10, no. 4, pp.1–13, 2018. https://doi.org/10.3390/su10041102

[446] F. Bork, “Interactive augmented reality systems - Hilfsmittel zur personalisierten Patientenaufklärung und Rehabilitation,” Der Unfallchirurg, vol. 121, no. 4, pp. 286–292, 2018. https://doi.org/10.1007/s00113-018-0458-y

[447] M. Gmeiner, J. Dirnberger, W. Fenz, M. Gollwitzer, G. Wurm, J. Trenkler & A. Gruber,, “Virtual Cerebral Aneurysm Clipping with Real-Time Haptic Force Feedback in Neurosurgical Education,” World Neurosurg, vol. 112, pp. e313–e323, 2018. https://doi.org/10.1016/j.wneu.2018.01.042

[448] G. Chen, F. Ma, Y. Jiang & R. Liu, “Virtual reality interactive teaching for Chinese traditional Tibetan clothing,” Art, Des Commun High Educ, vol. 17, pp. 51–59, 2018. https://doi.org/10.1386/adch.17.1.51_1

[449] A. Skinner, D. Diller, R. Kumar, J. A. Cannon-Bowers, R. Smith, A. Tanaka, D. Julian & R. S. Perez, “Development and application of a multi-modal task analysis to support intelligent tutoring of complex skills,” Ij Stem Ed, vol. 5, no. 1, pp. 1–17, 2018. https://doi.org/10.1186/s40594-018-0108-5

[450] A. Dey, M. Billinghurst, R. Lindeman & J. Edward Swan, “A Systematic Review of 10 Years of Augmented Reality Usability Studies: 2005 to 2014,” Front Robot AI, vol. 5. , pp. 1–28, 2018. https://doi.org/10.3389/frobt.2018.00037

[451] A. Zlomuzicaa, M. L. Wouda, A. Machulskaa, K. Kleimta, L. Dietricha, O. T. Wolfb, H. Assionc, J. P. Hustond, M. A. Silvad, E. Deree & J. Margrafa, “Deficits in episodic memory and mental time travel in patients with post-traumatic stress disorder,” in Prog NeuroPsychopharmacol Biol Psychiatry, vol. 20, no. 83, pp. 42–54, 2018. https://doi.org/10.1016/j.pnpbp.2017.12.014

[452] A. Gallagher, P. Henn, P. Neary, A. Senagore, P. W Marcello, B. P Bunting, N. Seymour, & R. Satava, “Outlier experienced surgeon’s performances impact on benchmark for technical surgical skills training,” ANZ J Surg, vol. 88, no. 5, pp. E412–E417, 2018. https://doi.org/10.1111/ans.14474

[453] M. G. Hanna, I. Ahmed, J. S. Nine, S. Prajapati & L. Pantanowitz, “Augmented Reality Technology Using Microsoft HoloLens in Anatomic Pathology,” Arch Pathol Lab Med, vol. 142, no. 5, pp. 638–644, 2018. https://doi.org/10.5858/arpa.2017-0189-OA

[454] C. Camp, “Editorial Commentary: “Virtual Reality” Simulation in Orthopaedic Surgery: Realistically Helpful, or Virtually Useless?,” Arthroscopy, vol. 34, pp. 1678–1679, 2018. https://doi.org/10.1016/j.arthro.2018.02.042

[455] P. Rosenfield, J. Fay, R. Gilchrist, C. Cui, D. Weigel, T. Robitaille, J. Otor & A. Goodman, “AAS WorldWide Telescope: A Seamless, Cross-platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data,” ApJS, vol. 236, no. 1, pp. 1–24, 2018. https://doi.org/10.3847/1538-4365/aab776

[456] C. Wang, H. Li & S. Y. Kho, “VR-embedded BIM immersive system for QS engineering education,” Comp Applic Eng Educ, vol. 26, no. 3, pp. 626–641, 2018. https://doi.org/10.1002/cae.21915

[457] A. Kozarovska & C. Larsson, “Implementation of a digital preparation validation tool in dental skills laboratory training,” Eur J Dent Educ, vol. 22, no. 2, pp. 115–121, 2017. https://doi.org/10.1111/eje.12272

[458] D. Antón, G. Kurillo & R. Bajcsy, “User experience and interaction performance in 2D/3D telecollaboration,” Future Generation Comp Syst, vol. 82, pp. 77–88, 2018. https://doi.org/10.1016/j.future.2017.12.055

[459] D. Kaur, S. Meeks, J. Patterson, J. Luna, J. Stanek, R. Kruse-Jarres & A. Dunn, “Utilization of a virtual reality based tool in hemophilia education,” Haemophilia, vol. 24, no. S5, pp. 132–133, 2018. https://doi.org/10.1111/hae.13478

[460] M. Pfeiffer, H. Kenngott, A. Preukschas, M. Huber, L. Bettscheider, B. P. Müller-Stich & S. Speidel, “IMHOTEP: virtual reality framework for surgical applications,” IJCARS, vol. 13, no. 1, pp. 741–748, 2018. https://doi.org/10.1007/s11548-018-1730-x

[461] L. K. Newcomb, M. S. Bradley, T. Truong, M. C. Tang, B. A. Comstock, Y. Li, A. G. Visco & N. Y. Siddiqui, “Correlation of Virtual Reality Simulation and Dry Lab Robotic Technical Skills,” J Minim Invasive Gynecol, vol. 25, no. 4, pp. 689–696, 2017. https://doi.org/10.1016/j.jmig.2017.11.006

[462] Y. Pulijala, M. Ma, M. Pears, D. Peebles & A. F. Ayoub, “Effectiveness of Immersive Virtual Reality in Surgical Training-A Randomized Control Trial,” J Oral Maxillofac Surg, vol. 76, no. 5, pp. 1065–1072, 2017. https://doi.org/10.1016/j.joms.2017.10.002

[463] E. J. White, M. McMahon, M. T. Walsh, J. C. Coffey & L. O. Sullivan, “Toward a Model of Human Information Processing for Decision-Making and Skill Acquisition in Laparoscopic Colorectal Surgery,” J Surg Educ, vol. 75, no. 3, pp. 749–757, 2017. https://doi.org/10.1016/j.jsurg.2017.09.010

[464] P. R. Harrison, N. T. Raison, T. Abe, W. L. Watkinson, F. Dar, B. J. Challacombe, H. G. Poel, M. S. Khan, P. Dasgupa & K. Ahmed, “The Validation of a Novel Robot-Assisted Radical Prostatectomy Virtual Reality Module,” J Surg Educ, vol. 75, no. 3, pp. 758–766, 2017. https://doi.org/10.1016/j.jsurg.2017.09.005

[465] A. P. Dwisaptarini, S. Suebnukarn, P. Rhienmora, P. Haddawy & S. Koontongkaew, “Effectiveness of the Multilayered Caries Model and Visuo-tactile Virtual Reality Simulator for Minimally Invasive Caries Removal: A Randomized Controlled Trial,” Oper Dent, vol. 43, no. 3, pp. E110–E118, 2018. https://doi.org/ 10.2341/17-083-C

[466] W. L. Watkinson, N. T. Raison, T. Abe, P. R. Harrison, S. Khan, H. G. Poel, P. Dasgupta & K. Ahmed, “Establishing objective benchmarks in robotic virtual reality simulation at the level of a competent surgeon using the RobotiX Mentor simulator,” Postgrad Med J, vol. 94, no. 1111, pp. 270–277, 2018. https://doi.org/ 10.1136/postgradmedj-2017-135351

[467] F. de Almeida, H. Abdala, A. Romeo, A. Wattiez & P. Ribeiro, “The Effect on Performance Time and Quality of the Knots after Mono or Bimanual Training of Laparoscopic Intracorporeal Knot Tying according to the Gladiator Rule Technique,” RBGO, vol. 40, no. 5, pp. 266–274, 2018. https://doi.org/10.1055/s-0038-1649494

[468] S. A. Rahm, K. K. Wieser, D. E. Bauer, F. W. Waibel, D. C. Meyer, C. A. Gerber & S. Fucentese, “Efficacy of standardized training on a virtual reality simulator to advance knee and shoulder arthroscopic motor skills,” BMC Musculoskelet Disord, vol. 19, no. 1, pp. 1–7, 2018. https://doi.org/10.1186/s12891-018-2072-0

[469] M. K. Bekele, R. Pierdicca, E. Frontoni, E. S. Malinverni & J. Gain, “A Survey of Augmented, Virtual, and Mixed Reality for Cultural Heritage,” ACM JOCCH, vol. 11, no. 2, pp. 7:1–7:36, 2018. https://doi.org/10.1145/3145534

[470] G. Veronesi, P. Dorn, J. Dunning, G. Cardillo, R. A. Schmid, J. Collins, J. Baste, S. Limmer, G. M. Shahin, J. Egberts, A. Pardolesi, E. Meacci, S. Stamenkovic, G. Casali, J. C. Rückert, M. Taurchini, N. Santelmo, F. Melfi & A. Toker, “Outcomes from the Delphi process of the Thoracic Robotic Curriculum Development Committee,” EJCTS, vol. 53, no. 6, pp. 1173–1179, 2018. https://doi.org/10.1109/TLA.2018.8444155

[471] D. C. Crisostomo, A. A. Moura, E. P. Rocha, F. M. Cruz & A. P. Moura, “Educational Software For Simulation Of Power and Voltage Control In Power Systems Connected With Wind Farms,” IEEE Lat Am T, vol. 16, no. 6, pp. 1603–1609, 2018. https://doi.org/10.1109/TLA.2018.8444155

[472] P. Wang, P. Wu, J. Wang, H.-L. Chi & X. Wang, “A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training,” Int J Environ Res Public Health, vol. 15, no. 6 , pp.1–18, 2018. https://doi.org/10.3390/ijerph15061204

[473] S. Yoganathan, D. Finch, E. T. Parkin & J. S. Pollard, “360° virtual reality video for the acquisition of knot tying skills: A randomised controlled trial,” Int J Surg, vol. 54, Pt, A, pp. 24–27, 2018. https://doi.org/10.1016/j.ijsu.2018.04.002

[474] F. Mahmood, E. Mahmood, R. G. Dorfman, J. D. Mitchell, F. Mahmood, S. B. Jones & R. Matyal, “Augmented Reality and Ultrasound Education: Initial Experience,” J Cardiothorac Vasc Anesth, vol. 32, no. 3, pp. 1363–1367, 2017. https://doi.org/10.1053/j.jvca.2017.12.006

[475] D. Jones, A. Jaffer, A. A. Nodeh, C. S. Biyani & P. Culmer, “Analysis of Mechanical Forces Used During Laparoscopic Training Procedures,” J Endourol, vol. 32, no. 6, pp. 529–533, 2018. https://doi.org/10.1089/end.2017.0894

[476] P. Panel, M.-E. Neveu, C. Villain, F. Debras, H. Fernandez & E. Debras, “Hysteroscopic resection on virtual reality simulator: What do we measure?,” J Gynecol Obstet Hum Reprod, vol. 47, no. 6, pp. 247–252, 2018. https://doi.org/10.1016/j.jogoh.2018.02.005

[477] A. Leong, P. M. Herst & P. H. Kane, “VERT, a virtual clinical environment, enhances understanding of radiation therapy planning concepts,” JMRS, vol. 65, no. 2, pp. 97–105, 2018. https://doi.org/10.1002/jmrs.272

[478] P. Kane, “Simulation-based education: A narrative review of the use of VERT in radiation therapy education,” JMRS, vol. 65, no. 2, pp. 131–136, 2018. https://doi.org/10.1002/jmrs.276

[479] M. O Connor, H. M. Deeks, E. Dawn, O. Metatla, A. Roudaut, M. Sutton, B R. Glowacki, R. Sage, P. Tew, M. Wonnacott, P. Bates, A. J. Mulholland & D. R. Glowacki, “Sampling molecular conformations and dynamics in a multi-user virtual reality framework,” Sci Adv, vol. 4, no. 6, pp. 1–24, 2018. https://doi.org/10.1126/sciadv.aat2731

[480] C. Walsh, S. Lydon, D. Byrne, C. Madden, S. Fox & P. O-Connor, “The 100 Most Cited Articles on Healthcare Simulation: A Bibliometric Review,” Simul Healthc, vol. 13, no. 3, pp. 211–220, 2018. https://doi.org/10.1097/SIH.0000000000000293

[481] A. Tzemanaki, G.A. Al, C. Melhuish & S. Dogramadzi, “Design of a Wearable Fingertip Haptic Device for Remote Palpation: Characterisation and Interface with a Virtual Environment,” Front Robot AI, vol. 62, pp. 1–15, 2018. https://doi.org/10.3389/frobt.2018.00062

[482] C. R. Oliveira, B. J. Filho, C. S. Esteves, T. Rossi, D. D. Nunes, M. M. Lima, T. Q. Irigaray & I. I. Argimon, “Neuropsychological Assessment of Older Adults With Virtual Reality: Association of Age, Schooling, and General Cognitive Status,” Front Psychol, vol. 9, pp. 1–8, 2018. https://doi.org/10.3389/fpsyg.2018.01085

[483] J. K. Jensen, L. Dyre, M. E. Jørgensen, L. A. Andreasen & M. G. Tolsgaard, “Simulation-based point-of-care ultrasound training: a matter of competency rather than volume,” Acta Anaesthesiol Scand, vol. 62, no. 6, pp. 811–819, 2018. https://doi.org/10.1111/aas.13083

[484] M. Gopal, A. A. Skobodzinski, H. M. Sterbling, S. R. Rao, C. R. LaChapelle, K. Suzuki & V. R. Litle, “Bronchoscopy Simulation Training as a Tool in Medical School Education,” Ann Thorac Surg, vol. 106, no. 1, pp. 280–286, 2018. https://doi.org/10.1016/j.athoracsur.2018.02.011

[485] M. Collins, V. Ding, R. L. Ball, D. L. Dolce, J. M. Henderson & C. Halpern, “Novel application of virtual reality in patient engagement for Deep Brain Stimulation: A Pilot study,” Brain Stimul, vol. 11, no. 4, pp. 935–937, 2018. https://doi.org/10.1016/j.brs.2018.03.012

[486] A. Akbulut, C. Catal & B. Yıldız, “On the effectiveness of virtual reality in the education of software engineering,” Comput Appl Eng Educ, vol. 26, no. 4, pp.1–10, 2018. https://doi.org/10.1002/cae.21935

[487] L. Jensen & F. Konradsen, “A review of the use of virtual reality head-mounted displays in education and training,” Educ Inf Technol, vol. 1, pp. 1–15, 2017. https://doi.org/10.1007/s10639-017-9676-0

[488] O. Mantziou, N. M. Papachristos & T. A. Mikropoulos, “Learning activities as enactments of learning affordances in MUVEs: A review-based classification,” Educ Inf Technol, vol. 23, pp. 1737–1765, 2018. https://doi.org/10.1007/s10639-018-9690-x

[489] M. Mast, E. Kleinlogel, B. Tur & M. Bachmann, “The future of interpersonal skills development: Immersive virtual reality training with virtual humans,” HRDQ, vol. 29, pp. 125–141, 2018. https://doi.org/10.1002/hrdq.21307

[490] D. P. Steinfort, Y. H. Yong, T. D. Byrne, A. Gorelik, H. G. Colt & L. B. Irving, “Assessment of Bronchoscopic Dexterity and Procedural Competency in a Low-fidelity Simulation Model,” J Bronchology Interv Pulmonol, vol. 25, no. 3, pp. 198–203, 2018. https://doi.org/10.1097/LBR.0000000000000481

[491] C. M. Harrington, D. O. Kavanagh, G. W. Ballester, A. W. Ballester, L. Gallagher, O. Traynor, A. J. Hill & S. P. Tierney, “360° Operative Videos: A Randomised Cross-Over Study Evaluating Attentiveness and Information Retention,” JSE, vol. 75, no. 4, pp. 993–1000, 2017. https://doi.org/10.1016/j.jsurg.2017.10.010

[492] M. A. Pimentel, R. D. Cabral, M. M. Costa, B. S. Neto & L. T. Cavazzola, “Does Previous Laparoscopic Experience Influence Basic Robotic Surgical Skills?,” JSE, vol. 75, no. 4, pp. 1075–1081, 2017. https://doi.org/10.1016/j.jsurg.2017.11.005

[493] J. Williams, D. Jones & F. Walker, “Consideration of using virtual reality for teaching neonatal resuscitation to midwifery students,” NEP, vol. 31. , pp. 126–129, 2018. https://doi.org/10.1016/j.nepr.2018.05.016

[494] J. L. Rubio-Tamayo, M. Barro & H. Gómez, “Digital Data Visualization with Interactive and Virtual Reality Tools. Review of Current State of the Art and Proposal of a Model,” ICONO14, vol. 16, no. 2, pp.39–65, 2018. https://doi.org/10.7195/ri14.v16i2.1174

[495] J. Cabero y B. Fernández, “Las tecnologías digitales emergentes entran en la Universidad: RA y RV,” RIED, vol. 21, no. 2, pp. 119–138, 2018. https://doi.org/10.5944/ried.21.2.20094

[496] S. Gearhart, M. Marohn, S. Ngamruengphong, G. Adrales, O. Owodunni, K. Duncan, E. Petrusa & P. Lipsett, “Development of a train-to-proficiency curriculum for the technical skills component of the fundamentals of endoscopic surgery exam,” Surg Endosc, vol. 32, no. 7, pp.3070–3075, 2018. https://doi.org/10.1007/s00464-017-6018-7

[497] H.-Ch. Pham, N.-N. Dao, J.-U. Kim, S. Cho & Ch. Park, “Energy-Efficient Learning System Using Web-Based Panoramic Virtual Photoreality for Interactive Construction Safety Education,” Sustainability, vol. 10, no. 7, pp. 1–17, 2018. https://doi.org/10.3390/su10072262

[498] G. Papanastasiou, A. Drigas, Ch. Skianis, M. Lytras & E. Papanastasiou, “Patient-Centric ICTs based Healthcare for students with learning, physical and/or sensory disabilities,” Telemat Inform, vol. 35, no. 4, pp. 654–664, 2018. https://doi.org/10.1016/j.tele.2017.09.002

[499] P. Maloca, E. Ramos, T. Heeren, P. Hasler, F. Mushtaq, M. Mon-Williams, H. P N Scholl, K. Balaskas, C. Egan, A. Tufail, L. Witthauer & P. C. Cattin, “High-Performance Virtual Reality Volume Rendering of Original Optical Coherence Tomography Point-Cloud Data Enhanced With Real-Time Ray Casting,” Transl Vis Sci Technol, vol. 7, no. 4, pp. 1–11, 2018. https://doi.org/10.1167/tvst.7.4.2

[500] K. D. Agyeman, S. D. Dodds, J. S. Klein, M. G. Baraga, V. H. Hernández & S. A. Conway, “Innovation in Resident Education: What Orthopaedic Surgeons Can Learn from Other Disciplines,” J Bone Jt Surg Am, vol. 100, no. 13, pp.90–90, 2018. https://doi.org/10.2106/JBJS.17.00839

[501] M. Johnson-Glenberg, “Immersive VR and Education: Embodied Design Principles That Include Gesture and Hand Controls,” Front Robot AI, vol. 5, –, 2018. https://doi.org/10.3389/frobt.2018.00081

[502] R. Kazan, A. Viezel-Mathieu, S. Cyr, T. M. Hemmerling & M. S. Gilardino, “The Montreal Augmentation Mammaplasty Operation (MAMO) Simulator: An Alternative Method to Train and Assess Competence in Breast Augmentation Procedures,” Aesthet Surg J, vol. 38, no. 8, pp. 835–849, 2018. https://doi.org/10.1093/asj/sjx267

[503] G. Piccinini, I. Imbimbo, D. Ricciardi, D. Coraci, C. Santilli, M. R. Monaco, C. Loreti, M. C. Vulpiani, M. C. Silveri & L. Padua, “The impact of cognitive reserve on the effectiveness of balance rehabilitation in Parkinson’s disease,” Eur J Phys Rehab Med, vol. 54, no. 4, pp. 554–559, 2017. https://doi.org/10.23736/S1973-9087.17.04837-7

[504] M. Youssef, S. Mohamed, B. Fathi & E. Kabtane, “OpenSimulator based Multi-User Virtual World: A Framework for the Creation of Distant and Virtual Practical Activities,” IJACSA, vol. 9, no. 8., pp. 175–186, 2018. https://doi.org/10.14569/IJACSA.2018.090823

[505] C. Shiner, A. Thompson-Butel, P. Bou-Haider, J. Bailey, J. McGhee & S. Faux, “Developing a novel, personalised stroke education tool using immersive virtual reality and 3D visualisation,” Inter J Stroke, vol 13, no. 5, pp. 1–10, 2018. https://doi.org/10.1177/1747493018778666

[506] N. T. Sahin, N. U. Keshav, J.P. Salisbury & A. Vahabzadeh, “Safety and Lack of Negative Effects of Wearable Augmented-Reality Social Communication Aid for Children and Adults with Autism,” JCM, vol. 7, no. 8, pp. 1–17, Aug. 2018. https://doi.org/10.3390/jcm7080188

[507] J. A. Parong & R. E. Mayer, “ Learning Science in Immersive Virtual Reality,” J Educ Psychol, vol. 110, no. 6, pp. 785–797, 2018. https://doi.org/10.1037/edu0000241

[508] E. D. Allen, “Simulation of Shoulder Dystocia for Skill Acquisition and Competency Assessment: A Systematic Review and Gap Analysis,” Simul healthc, vol. 13, no. 4, pp. 268–283, 2018. https://doi.org/10.1097/SIH.0000000000000292

[509] Y. A. Jimenez, S. Cumming, W. Wang, K. Stuart, D. I. Thwaites & S. Lewis, “Patient education using virtual reality increases knowledge and positive experience for breast cancer patients undergoing radiation therapy,” SCC, vol. 26, no. 8, pp. 2879–2888, 2018. https://doi.org/10.1007/s00520-018-4114-4

[510] G. Sankaranarayanan, L. Wooley, D. C. Hogg, D. V. Dorozhkin, J. S. Olasky, S. Chauhan, J. W. Fleshman, S. De, D. Scott & D. O. Jones, “Immersive virtual reality-based training improves response in a simulated operating room fire scenario,” Surg Endosc, vol. 32, no. 8, pp. 3439–3449, Aug. 2018. https://doi.org/10.1007/s00464-018-6063-x

[511] A. K. Dubin, D. Julian, A. Tanaka, P.J. Mattingly & R. Smith, “A model for predicting the GEARS score from virtual reality surgical simulator metrics,” Surg Endosc, vol. 32, no. 8, pp. 3576–3581, 2018. https://doi.org/10.1007/s00464-018-6082-7

[512] A. D. Pieterse, V. A.L. Huurman, B. P. Hierck & M. E.J. Reinders, “Introducing the innovative technique of 360° virtual reality in kidney transplant education,” Transpl Immunol, vol. 49, pp. 5–6, 2018. https://doi.org/10.1016/j.trim.2018.03.001

[513] A. Ganguli, G. J. Pagan-Diaz, L. K. Grant, C. Cvetkovic, M. Bramlet, J. Vozenilek, T. Kesavadas & R. Bashir, “3D printing for preoperative planning and surgical training: a review,” Biomed Microdevices, vol. 20, no. 3, pp. 1–24, 2018. https://doi.org/10.1007/s10544-018-0301-9

[514] M. Veaudor, L. Gérinière, P. J. Souquet, L. Druette, X. Martin, J. M. Vergnon & S. Couraud, “High-fidelity simulation self-training enables novice bronchoscopists to acquire basic bronchoscopy skills comparable to their moderately and highly experienced counterparts,” BMC Med Educ, vol. 18, pp. 1–8, 2018. https://doi.org/10.1186/s12909-018-1304-1

[515] M. G. Goldenberg, J. Y. Lee, J. C. Kwong, T. P. Grantcharov & A. J. Costello, “Implementing assessments of robot-assisted technical skill in urological education: a systematic review and synthesis of the validity evidence,” BJU Inter, vol. 122, no. 3, pp. 501–519, 2018. https://doi.org/10.1111/bju.14219

[516] Y. Zhu, S. Li, X. Luo, K. Zhu, Q. Fu, X. Chen, H. Gong & J. Yu, “A shared augmented virtual environment for real-time mixed reality applications,” JVCA, vol. 29, no. 5, pp.1–13, 2018. https://doi.org/10.1002/cav.1805

[517] Y. Sang, X. Wang & W. Sun, “Research on the development of an interactive three coordinate measuring machine simulation platform,” Comput Appl Eng Educ, vol. 26, no. 5, pp. 1173–1185, 2018. https://doi.org/10.1002/cae.21970

[518] S. K. Sood & K. D. Singh, “An Optical-Fog assisted EEG-based virtual reality framework for enhancing E-learning through educational games,” Comput Appl Eng Educ, vol. 26, no. 5, pp. 1565–1576, 2018. https://doi.org/10.1002/cae.21965

[519] J. I. Rojas Sola & A. Aguilera, “Virtual and augmented reality: Applications for the learning of technical historical heritage,” Comput Appl Eng Educ, vol. 26, no. 5–, 2018. https://doi.org/10.1002/cae.22039

[520] R. L. Lamb, P. D. Antonenko, E. Etopio & A. Seccia, “Comparison of virtual reality and hands on activities in science education via functional near infrared spectroscopy,” Comput Educ, vol. 124, pp. 14–26, 2018. https://doi.org/10.1016/j.compedu.2018.05.014

[521] Y.-P. Wuang, Y.-H. Chiu, Y. J. Chen, Ch.-P. Chen, Ch.-Ch. Wang, Ch.-L. Huang, T.-M. Wu & W.-H. Ho, “Game-Based Auxiliary Training System for improving visual perceptual dysfunction in children with developmental disabilities: A proposed design and evaluation,” Comput Educ, vol. 124, pp. 27–36, 2018. https://doi.org/10.1016/j.compedu.2018.05.008

[522] A. Suh & J. Prophet, “The State of Immersive Technology Research: A Literature Analysis,” Comput Hum Behav, vol. 86, pp. 77–90, 2018. https://doi.org/10.1016/j.chb.2018.04.019

[523] M. Fischer, “The future of health debates? A design thinking sketch of the VR Health Arena,” Health Technol, vol. 8, no. 4, pp. 281–290, 2018.https://doi.org/10.1007/s12553-018-0220-z

[524] Y. Pulijala, M. Ma, M. Pears, D. Peebles & A. Ayoub, “An innovative virtual reality training tool for orthognathic surgery,” Inter J Oral Maxillofac Surg, vol. 47, no. 9, pp.1–7, 2018. https://doi.org/10.1016/j.ijom.2018.01.005

[525] A. Hamacher, T. K. Whangbo, S. Jin Kim & K. Chung, “Virtual Reality and Simulation for Progressive Treatments in Urology,” INJ, vol. 22, no. 3, pp. 151–160, 2018. https://doi.org/10.5213/inj.1836210.105

[526] J. Ryu, J. Park, F. S. Nahm, Y. Jeon, A. Oh, H. J. Lee, J. Kim & S. Han, “The Effect of Gamification through a Virtual Reality on Preoperative Anxiety in Pediatric Patients Undergoing General Anesthesia: A Prospective, Randomized, and Controlled Trial,” J Clin Med, vol 7, no. 9, pp. 1–8, 2018. https://doi.org/10.3390/jcm7090284

[527] D. Sapkaroski, M. Baird, J. McInerney, John & M. Dimmock, “The implementation of a haptic feedback virtual reality simulation clinic with dynamic patient interaction and communication for medical imaging students,” J Med Radiat Sci, .vol. 65, no. 3, pp. 218–225, 2018. https://doi.org/10.1002/jmrs.288

[528] D. D. Ruikar, R. Hegadi & K. C. Santosh, “A Systematic Review on Orthopedic Simulators for Psycho-Motor Skill and Surgical Procedure Training,” J Med Syst, vol. 42, no. 9, pp. 1–21, 2018. https://doi.org/10.1007/s10916-018-1019-1

[529] P. Gambadauro, M. Milenkovic & G. Hadlaczky, “Simulation for Training and Assessment in Hysteroscopy: A Systematic Review,” J Minim Invasive Gynecol, vol. 25, no. 6, pp. 963–973, 2018. https://doi.org/10.1016/j.jmig.2018.03.024

[530] A. S. Lichtman, W. H. Parker, B. A. Goff, N. Mehra, E. M. Shore, G. G. Lefebvre, A. C. Chiang, J. P. Lenihan & H. W. Schreuder, “A Randomized Multicenter Study Assessing the Educational Impact of a Computerized Interactive Hysterectomy Trainer on Gynecology Residents,” J Minim Invasive Gynecol, vol. 25, no. 6, pp. 1035–1043, 2018. https://doi.org/10.1016/j.jmig.2018.01.025

[531] M. H. Vetter, M. S. Palettas, E. M. Hade, J. M. Fowler & R. Salani, “Time to consider integration of a formal robotic-assisted surgical training program into obstetrics/gynecology residency curricula,” Am J Robotic Surg, vol. 12, no. 3, pp. 517–521, 2018. https://doi.org/10.1007/s11701-017-0775-0

[532] I. Theodoulou, M. Nicolaides, T. Athanasiou, A. E. Papalois & M. Sideris, “Simulation-Based Learning Strategies to Teach Undergraduate Students Basic Surgical Skills: A Systematic Review,” JSE, vol. 75, no. 5, pp. 1374–1388, 2018. https://doi.org/10.1016/j.jsurg.2018.01.013

[533] M. Yovanoff, H.-E. Chen, D. Pepley, K. Mirkin, D. C. Han, J. Z. Moore & S. Miller, “Investigating the Effect of Simulator Functional Fidelity and Personalized Feedback on Central Venous Catheterization Training,” J Surg Educ, vol. 75(5):-, 75. , pp. 1410–1421, 2018. https://doi.org/10.1016/j.jsurg.2018.02.018

[534] E. Rodrigues & R. Silva, “Aprendizagem em Arte e Realidade Virtual no Ensino Fundamental,” EducaOnline, vol. 12, no. 3, pp. 1–28, 2018. http://www.latec.ufrj.br/revistas/index.php?journal=educaonline&page=article&op=view&path%5B%5D=1008

[535] K. Kowalewski, C. R. Garrow, T. Proctor, A. Preukschas, M. Friedrich, P. C. Müller, H. G. Kenngott, L. Fischer, B. P. Müller-Stich & F. Nickel, “LapTrain: multi-modality training curriculum for laparoscopic cholecystectomy—results of a randomized controlled trial,” Surg Endosc, vol. 32, -., pp. 3830–3838, 2018. https://doi.org/10.1007/s00464-018-6110-7

[536] M. Duivon, J. Perrier, F. Joly, I. Licaj, J.-M. Grellard, B. Clarisse, Ch. Lévy, P. Fleury, S. Madeleine, N. Lefèvre, G. Rauchs, G. Lecouvey, F. Fraisse, F. Viader, F. Eustache, B. Desgranges & B. Giffard, “Impact of breast cancer on prospective memory functioning assessed by virtual reality and influence of sleep quality and hormonal therapy: PROSOM-K study,” BMC Cancer, vol. 18, no. 1, pp. 1–10, 2018. https://doi.org/10.1186/s12885-018-4762-2

[537] J. Marín-Morales, J. L. Higuera-Trujillo, A. Greco, J. Guixeres, C. Llinares, E. P. Scilingo, M. Alcañiz & G. Valenza, “Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors,” Sci Rep, vol. 8, pp. 1–15, 2018. https://doi.org/10.1038/s41598-018-32063-4

[538] M. A. Wong, S. Chue, M. V. Jong, H.W. Benny & N. Zary, “Clinical instructors’ perceptions of virtual reality in health professionals’ cardiopulmonary resuscitation education,” SAGE Open Med, vol. 6–, 2018. https://doi.org/10.1177/2050312118799602

[539] S. Panerai, V. Catania, F. Rundo & R. Ferri, “Remote Home-Based Virtual Training of Functional Living Skills for Adolescents and Young Adults With Intellectual Disability: Feasibility and Preliminary Results,” Front Psychol, vol. 9, no. 9, pp. 17–30, 2018. https://doi.org/10.3389/fpsyg.2018.01730

[540] P. J. Dougherty, L.K. Cannada, P. Murray & P. M. Osborn, “Progressive Autonomy in the Era of Increased Supervision: AOA Critical Issues,” J Bone Joint Surg Am, vol. 100, no. 18–, 2018. https://doi.org/10.2106/JBJS.17.01515

[541] M. D. Kaos, M. R. Beauchamp, S. Bursick, A. E. Latimer-Cheung, H. Hernandez, D. E. R. Warburton, C. Yao, Z. Ye, T. C. N. Graham & R. E. Rhodes, “Efficacy of Online Multi-Player Versus Single-Player Exergames on Adherence Behaviors Among Children: A Nonrandomized Control Trial,” Ann Behav Med, vol. 52, no. 10, pp. 878–889, 2018. https://doi.org/10.1093/abm/kax061

[542] L. Hauk, “Virtual reality may prove useful for surgical fire education and training,” AORN J, vol. 108p4–p4, 2018. https://doi.org/10.1002/aorn.12406

[543] K. Arcand, E. Jiang, S. Price, M. Watzke, T. Sgouros & P. Edmonds, “Walking Through an Exploded Star: Rendering Supernova Remnant Cassiopeia A into Virtual Reality,” CAPJ, vol. 1, no. 24, pp. 1–20, 2018. Available: https://arxiv.org/ftp/arxiv/papers/1812/1812.06237.pdf

[544] P. P. Rau, J. Zheng, Z. Guo &, J. C. Li, “Speed reading on virtual reality and augmented reality,” Comput Educ, vol. 125, pp. 240–245, Oct. 2018. https://doi.org/10.1016/j.compedu.2018.06.016

[545] C. Girvan, “What is a virtual world? Definition and classification,” Educ Technol Res Dev, vol. 66, pp. 1087–1100, 2018. https://doi.org/10.1007/s11423-018-9577-y

[546] G. Makransky & L. Lilleholt, “A structural equation modeling investigation of the emotional value of immersive virtual reality in education,” Educ Technol Res Dev, vol. 66, pp. 1141–1164, Feb. 2018. https://doi.org/10.1007/s11423-018-9581-2

[547] H. Maertens, F. Vermassen, R. Aggarwal, B. Doyen, L. M. Desender, I. V. Herzeele & L. Annemans, “Endovascular Training Using a Simulation Based Curriculum is Less Expensive than Training in the Hybrid Angiosuite,” Eur J Vasc Endovasc Surg, vol. 56, no. 4, pp. 583–590, Oct. 2018. https://doi.org/10.1016/j.ejvs.2018.07.011

[548] I. Sural & A. Prof, “Augmented Reality Experience: Initial Perceptions of Higher Education Students,” Int J Instr, vol. 11, no. 4, pp. 565–576, 2018. https://doi.org/10.12973/iji.2018.11435a

[549] D. Fonseca, I. Navarro, I. de Renteria, F. Moreira, Á. Ferrer & O. de Reina, “Assessment of Wearable Virtual Reality Technology for Visiting World Heritage Buildings: An Educational Approach,” JECR, vol. 56, no. 2, pp. 940–973, 2017. https://doi.org/10.1177/0735633117733995

[550] V. C. Pandrangi, B. Gaston, N. P. Appelbaum, F. C. Albuquerque, M. M. Levy & R. A. Larson, “The Application of Virtual Reality in Patient Education,” Ann Vasc Surg, vol. 59, pp. 184–189, 2019. https://doi.org/10.1016/j.avsg.2019.01.015

[551] E. J. Dyer, B. J. Swartzlander & M. R. Gugliucci, “Using virtual reality in medical education to teach empathy,” JMLA, vol. 106, no. 4, pp. 498–500, 2018. https://doi.org/10.5195/jmla.2018.518

[552] R. H. Petersen, K. Gjeraa, K. Jensen, L. B., Møller, H. Hansen & L. Konge, “Assessment of competence in video-assisted thoracoscopic surgery lobectomy: A Danish nationwide study,” J Thorac Cardiovasc Surg, vol. 156, no. 4, pp. 1717–1722, Oct. 2018. https://doi.org/10.1016/j.jtcvs.2018.04.046

[553] Ch.-H. Kao, Ch.-Ch. Chen, W.-Y. Jhu, Y.-T. Tsai, S.-H Chen, Ch.-M Hsu & Ch.-Y. Chen, “Novel digital glove design for virtual reality applications,” Microsyst Technol, vol. 24, no. 10, pp. 4247–4266, 2018. https://doi.org/10.1007/s00542-018-3747-z

[554] F. Nicolosi, Z. Rossini, I. Zaed, A.G. Kolias, M. Fornari & F. Servadei, “Neurosurgical digital teaching in low-middle income countries: beyond the frontiers of traditional education,” Neurosurg Focus, vol. 45, no. 4, E17 ., pp. 1–8, 2018. https://doi.org/10.3171/2018.7.FOCUS18288

[555] B. Hendricks, A. J Patel, J. Hartman, M. F Seifert & A. Cohen-Gadol, “Operative Anatomy of the Human Skull: A Virtual Reality Expedition,” Oper Neurosurg, vol. 15, no. 4, pp. 368–377, 2018. https://doi.org/10.1093/ons/opy166

[556] C. Yang, U. Kalinitschenko, J. R. Helmert, J. Weitz, C. Reissfelder & S. T. Mees, “Transferability of laparoscopic skills using the virtual reality simulator,” Surg Endosc, vol. 32, no. 10, pp. 4132–4137, 2018. https://doi.org/10.1007/s00464-018-6156-6

[557] M. K. Rooney, F. Zhu, E. F. Gillespie, J. R. Gunther, R. P. McKillip, M. Lineberry, A. Tekian & D. W. Golden, “!Simulation as More Than a Treatment-Planning Tool: A Systematic Review of the Literature on Radiation Oncology Simulation-Based Medical Education,” Inter J Radiat Oncol Biol Phys, vol. 102, no. 2, pp. 257–283, 2018. https://doi.org/10.1016/j.ijrobp.2018.05.064

[558] J. T. Lui, E. D. Compton, W. H. Ryu & M. Y. Hoy, “Assessing the role of virtual reality training in Canadian Otolaryngology–Head & Neck Residency Programs: a national survey of program directors and residents,” J Otolaryngol Head Neck Surg, vol. 47, no. 1, pp. 1–7, 2018. https://doi.org/10.1186/s40463-018-0309-4

[559] T. D. Goddard, A. A. Brilliant, T. L. Skillman, S. Vergenz, J. Tyrwhitt-Drake, E. C. Meng & T. E. Ferrin, “Molecular Visualization on the Holodeck,” JMB, vol. 430, no. 21, pp. 3982–3996, Oct. 2018. https://doi.org/10.1016/j.jmb.2018.06.040

[560] J. Jenkinson, “Molecular Biology Meets the Learning Sciences: Visualizations in Education and Outreach,” JMB, vol. 430, no. 21, pp. 4013–4027, 2018. https://doi.org/10.1016/j.jmb.2018.08.020

[561] L. M. Knab, M. S. Zenati, A. Khodakov, M. Rice, A. Al Abbas, D. L. Bartlett, A. H. Zureikat, H. J. Zeh & M. E. Hogg, “Evolution of a Novel Robotic Training Curriculum in a Complex General Surgical Oncology Fellowship,” Ann Surg Oncol, vol. 25, no. 12, pp. 3445–3452, Nov. 2018. https://doi.org/10.1245/s10434-018-6686-0

[562] J. Turchini, M. E. Buckland, A. J. Gill & S. Battye, “Three-Dimensional Pathology Specimen Modeling Using “Structure-From-Motion” Photogrammetry: A Powerful New Tool for Surgical Pathology,” Arch Pathol Lab Med, vol. 142, no. 11, pp. 1415–1420, 2018. https://doi.org/10.5858/arpa.2017-0145-OA

[563] A. Salama., “Recent Discourse and the Promise for Global Networks on Architecture and Urbanism,” IJAR, vol. 12, pp. 2–10, 2018. https://doi.org/10.26687/archnet-ijar.v12i3.1833

[564] A. H. Maghool, S. Moeini & Y. Arefazar, “An educational application based on virtual reality technology for learning architectural details: Challenges and benefits,” IJAR, vol. 12, no. 246, pp. 246–272, 2018. https://doi.org/10.26687/archnet-ijar.v12i3.1719

[565] M. C. Viegas, A. M. Pavani, N. Lima, A. Marques, M.I. Pozzo, E. Dobboletta, V. Atencia, D. D. Barreto, F. Calliari, A. V. Fidalgo, D. A. Lima, G. P. Temporão & G. R. Alves, “Impact of a remote lab on teaching practices and student learning,” Comp Educ, vol. 126, pp. 201–216, Jul. 2018. https://doi.org/10.1016/j.compedu.2018.07.012

[566] S. F. AlFalah, “Perceptions toward adopting virtual reality as a teaching aid in information technology,” Educ Inf Technol, vol. 23, no. 2, pp. 2633–2653, 2018. https://doi.org/10.1007/s10639-018-9734-2

[567] C. Fernandez, A. A. Salles, M. Sears, R. D. Morris & D. L. Davis, “Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality,” Environ Res, vol. 167, pp. 694–699, 2018. https://doi.org/10.1016/j.envres.2018.05.013

[568] L. Liu, J. Li, S. Yuan, T. Wang, F. Chu, X. Lu, J. Hu, C. Wang, B. Yan & L. Wang, “Evaluating the effectiveness of a preclinical practice of tooth preparation using digital training system: A randomised controlled trial,” Eur J Dent Educ, vol. 22, no. 4, pp. e679–e686, 2018. https://doi.org/10.1111/eje.12378

[569] I. Naroura, J.J. Díaz, F. Xavier, F. Baldairon, H. Favreau, P. Clavert & P. Liverneaux, “Teaching of distal radius shortening osteotomy: three-dimensional procedural simulator versus bone procedural simulator,” J Hand Surg Eur, vol. 43, no. 9, pp. 961–966, 2018. https://doi.org/10.1177/1753193417754179

[570] H. Chiao, Y. Chen & W. Huang, “Examining the usability of an online virtual tour-guiding platform for cultural tourism education,” JoHLSTE, vol. 23, pp. 29–38, 2018. https://doi.org/10.1016/j.jhlste.2018.05.002

[571] S. G. Maliha, S. R. Diaz-Siso, N. M. Plana, A. Torroni & R. L. Flores, “Haptic, Physical, and Web-Based Simulators: Are They Underused in Maxillofacial Surgery Training?,” J Oral Maxillofac Surg, vol. 76, no. 11, pp. 2424.e1–2424.e11, 2018. https://doi.org/10.1016/j.joms.2018.06.177

[572] B.C. Wainman, L. Wolak, G. Pukas, E., Zheng & G. R. Norman, “The superiority of three-dimensional physical models to two-dimensional computer presentations in anatomy learning,” Med Educ, vol. 52, no. 11, pp. 1138–1146, 2018. https://doi.org/10.1111/medu.13683

[573] M. Hackett & M. I. Proctor, “The effect of autostereoscopic holograms on anatomical knowledge: a randomised trial,” Med Educ, vol. 52, no. 11, pp. 1147–1155, 2018. https://doi.org/10.1111/medu.13729

[574] A. M Tucker, J. Beckett & N. Martin, “Next Generation Case Report: Supraorbital Craniotomy for Anterior Communicating Artery Aneurysm Clipping in Annotated Virtual Reality Environment,” Oper Neurosurg, vol. 15, no. 5, pp. E73–E76, 2017. https://doi.org/10.1093/ons/opy039

[575] A. Guni, N. Raison, B. Challacombe, S. Khan, P. Dasgupta & K. Ahmed, “Development of a technical checklist for the assessment of suturing in robotic surgery,” Surg Endosc, vol. 32, no. 11, pp. 4402–4407, 2018. https://doi.org/10.1007/s00464-018-6407-6

[576] E. İlker, “Examining wayfinding behaviours in architectural spaces using brain imaging with electroencephalography (EEG),” Archit Sci Rev, vol. 61, no. 6, pp. 410–428, 2018. https://doi.org/10.1080/00038628.2018.1523129

[577] P. Cipresso, I. Giglioli, M. Raya & G. Riva, “The Past, Present, and Future of Virtual and Augmented Reality Research:2 A Network and Cluster Analysis of the Literature,” Front Psychol, vol. 6, no. 9, pp. 1–20, 2018. https://doi.org/10.3389/fpsyg.2018.02086

[578] T. Vajsbaher, H. Schultheis & N. K. Francis, “Spatial cognition in minimally invasive surgery: a systematic review,” BMC Surg, vol. 18, no. 1, pp. 1–16, 2018. https://doi.org/10.1186/s12893-018-0416-1

[579] Z. Feng, V. González, R. Amor, R. Lovreglio & G. Cabrera, “Immersive Virtual Reality Serious Games for Evacuation Training and Research: A Systematic Literature Review,” Comput Educ, vol. 127, no. 1, pp. 252–266, 2018. https://doi.org/10.1016/j.compedu.2018.09.002

[580] B. Bossavit, A. Pina, I. Sanchez-Gil & A. Urtasun, “Educational Games to Enhance Museum Visits for Schools,” J Educ Techno Soc, vol. 21, no. 4, pp. 171–186, 2018.

[581] W.-Ch. Hsu, Ch.-M. Tseng & S.-Ch. Kang, “Using Exaggerated Feedback in a Virtual Reality Environment to Enhance Behavior Intention of Water-Conservation,” J Educ Techno Soc, vol. 21, no. 4, pp. 187–203, 2018.

[582] C. Schott & S. Marshall, “Virtual reality and situated experiential education: A conceptualization and exploratory trial,” J Comput, vol. 34, no. 6, pp. 843–852, 2018. https://doi.org/10.1111/jcal.12293

Mauricio Vásquez-Carbonell es Ingeniero electrónico y magíster en Ingeniería de la Universidad de la Costa (Colombia). Profesor Asistente II de la Universidad de la Costa, adscrito al Departamento de Ciencias de la Computación y Electrónica. Su experiencia laboral está relacionada con el sector salud en el desarrollo de herramientas para la enseñanza y el aprendizaje en pacientes clínicos y estudiantes. Actualmente enfocado en el uso y desarrollo de programas en realidad virtual, así como en múltiples aspectos de la educación aplicada. https://orcid.org/0000-0002-3579-4280

Jorge Iván Silva-Ortega es Ingeniero electrónico y electricista, con magíster en Ingeniería Eléctrica de la Universidad del Norte (Colombia). Estudiante de doctorado de Ingeniería con énfasis en Energía, Termodinámica y Medio Ambiente de la Universidad Pontificia Bolivariana en Medellín (Colombia). Profesor Adjunto III de la Universidad de la Costa, adscrito al Departamento de Energía, Investigador con categoría Asociado y adscrito al Grupo de Investigación en Optimización Energética (GIOPEN). Su experiencia laboral está relacionada con el sector de las obras de energía eléctrica. Sus intereses de investigación consideran: sistemas eléctricos de potencia, educación en ingeniería eléctrica; planeación, operación y control de sistemas de potencia; y redes eléctricas inteligentes. https:/orcid.org/0000-0002-7813-0142